首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37810篇
  免费   6832篇
  国内免费   4422篇
化学   27518篇
晶体学   487篇
力学   2203篇
综合类   212篇
数学   3835篇
物理学   14809篇
  2024年   115篇
  2023年   838篇
  2022年   1131篇
  2021年   1479篇
  2020年   1763篇
  2019年   1726篇
  2018年   1426篇
  2017年   1318篇
  2016年   1927篇
  2015年   1840篇
  2014年   2334篇
  2013年   2930篇
  2012年   3486篇
  2011年   3616篇
  2010年   2400篇
  2009年   2235篇
  2008年   2535篇
  2007年   2176篇
  2006年   2018篇
  2005年   1614篇
  2004年   1227篇
  2003年   983篇
  2002年   1002篇
  2001年   771篇
  2000年   634篇
  1999年   723篇
  1998年   604篇
  1997年   593篇
  1996年   594篇
  1995年   529篇
  1994年   432篇
  1993年   359篇
  1992年   334篇
  1991年   270篇
  1990年   246篇
  1989年   196篇
  1988年   120篇
  1987年   104篇
  1986年   127篇
  1985年   104篇
  1984年   55篇
  1983年   56篇
  1982年   36篇
  1981年   30篇
  1980年   10篇
  1979年   4篇
  1977年   2篇
  1959年   2篇
  1957年   7篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
在密度泛函理论的框架下, 采用嵌入点电荷簇模型研究了O2在MgO(001)完整和缺陷表面上的吸附.用电荷自洽的方法确定了点电荷的值.计算结果表明, O2倾向吸附在低配位的角Mg2+端.并且发现, 当O2为平躺吸附时,键长有较大的拉伸,将有利于O2的解离.同时,分别计算了使用裸簇和嵌入表观±2.0 e点电荷簇模型时的吸附能,并与采用电荷自洽方法的计算值进行了比较.结果表明,电荷自洽方法更能有效反映簇周围的环境,得到的计算结果能够较好地与实验值吻合.最后,分别计算了不同吸附情况下O2的振动频率.  相似文献   
982.
One new cucurbitane-type triterpenoid saponin, 5b,19-epoxycucurbita-6,23-diene-3b,19,25-triol-3-O-b-D-allopyranoside (1), named momordicoside P was isolated from the fresh fruits of Momordica charantia. The structure of the saponin was elucidated byspectral methods, including 2D-NMR spectra.  相似文献   
983.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   
984.
Colloidal semiconductor nanocrystals have attracted considerable attention as a novel biological luminescent label. The bioinorganic conjugates of luminescent CdTe nanocrystals and protein, including CdTe/BSA (bovine serum albumin) and CdTe/MAB (mouse monoclonal antibody against hepatities B surface antigen), were formed via electrostatic/coordination self-assembly. Pure CdTe nanocrystals, CdTe/BSA and CdTe/MAB were used in the immunochromatographic assay experiments, respectively. And the results indicated that CdTe nanocrystals could be used and developed as a novel label with good stability, high sensitivity and facile determination of several analytes in immunochromatographic assay strips.  相似文献   
985.
The complex Eu(btfa)3 (phen) (btfa=4,4,4‐trifluoro‐1‐phenyl‐1, 3‐butanedione, phen = 1,10‐phenanthroline) has been prepared and characterized by elemental analysis, IR and UV spectroscopies. The crystal and molecular structures of the complex have been determined by X‐ray diffraction analysis. It belongs to the monoclinic crystal system, space group P21/c with a = 0.9700(2) nm, b = 3.7450(5) nm, c = 1.0917(3) nm, β = 92.51(2)°, V = 3.962(1) nm5, Z = 4, Dc = 1.639 g/cm3, μ = 1.676 mm?1, F(000) = 1936, R1, = 0.0388, wR2 = 0.0775. Structure analysis shows that the europium(III) ion is coordinated to six oxygen atoms of β‐diketonate anions and two nitrogen atoms of phenanthroline molecule. The coordination polyhedron is an approximate square antiprism.  相似文献   
986.
We report the sidewall functionalization of soluble HiPco single-walled carbon nanotubes (SWNTs) by addition of dichlorocarbene. The dichlorocarbene-functionalized SWNTs [(s-SWNT)CCl(2)] retain their solubility in organic solvents such as tetrahydrofuran and dichlorobenzene. The degree of dichlorocarbene functionalization was varied between 12% and 23% by using different amounts of the dichlorocarbene precursor. Because the addition of dichlorocarbene saturates the carbon atoms on the sidewall of the SWNTs and effectively replaces the delocalized partial double bonds with a cyclopropane functionality, the optical spectra of the SWNTs change dramatically. We estimate that the saturation of 25% of the pi-network electronic structure of the SWNTs is sufficient to remove all vestiges of the interband transitions in the infrared spectrum. The transitions at the Fermi level in the metallic SWNTs that appear in the far-infrared (FIR) region of the spectrum show a dramatic decrease of intensity on dichlorocarbene functionalization. The FIR region of the spectrum allows a clear differentiation between the covalent and the ionic chemistry of SWNTs. In contrast with covalent functionalization, we show that reaction of the SWNTs with bromine vapor leads to a strong increase in absorptions at the Fermi level that is observable in the FIR due to hole doping of the semiconducting SWNTs. Thermal treatment of the (s-SWNT)CCl(2) above 300 degrees C resulted in the breakage of C-Cl bonds, but did not restore the original electronic structure of the SWNTs.  相似文献   
987.
Highly stable Cu(I)-olefin coordination oligomers and polymers have been successfully prepared and applied to construct metal-organic frameworks (MOFs) with interesting physical and chemical functions in recent years. In this review, we present the olefin-Cu(I) coordination oligomers and polymers and their novel physical properties. From structure to functions, particular emphasis is placed on the coordination and organometallic chemistry of olefin-Cu(I) coordination oligomers and polymers, their structures and potential applications as solids possessing unusual physical functional properties such as electrochemical, chiral separation, fluorescent sensing and ferroelectricity.  相似文献   
988.
Gibbs ensemble Monte Carlo simulations were used to calculate the vapor-liquid and vapor-solid coexistence curves for benzene using two simple united-atom models. An extension of the Gibbs ensemble method that makes use of an elongated box containing a slab of the condensed phase with a vapor phase along one axis was employed for the simulations of the vapor-solid equilibria and the vapor-liquid equilibria at very low reduced temperatures. Configurational-bias and aggregation-volume-bias Monte Carlo techniques were applied to improve the sampling of particle transfers between the two simulation boxes and between the vapor and condensed-phase regions of the elongated box. An isotropic united-atom representation with six Lennard-Jones sites at the positions of the carbon atoms was used for both force fields, but one model contained three additional out-of-plane partial charge sites to explicitly represent benzene's quadrupolar interactions. Both models were fitted to reproduce the critical temperature and density of benzene and yield a fair representation of the vapor-liquid coexistence curve. In contrast, differences between the models are very large for the vapor-solid coexistence curve. In particular, the lack of explicit quadrupolar interactions for the 6-site model greatly reduces the energetic differences between liquid and solid phases, and this model yields a triple point temperature that is about a factor of 2 too low. In contrast, the 9-site model predicts a triple point of benzene at T = 253 +/- 6 K and p = 2.3 +/- 0.8 kPa in satisfactory agreement with the experimental data (T = 278.7 K and p = 4.785 kPa).  相似文献   
989.
[Chemical reaction: See text] We have developed a general, efficient, and inexpensive catalyst system for arylation of amines by using 10 mol % of CuI as the copper source, 20 mol % of diphenyl pyrrolidine-2-phosphonate (DPP) as the ligand, K3PO4 as the base, and DMF containing 2% water (v/v) as the solvent.  相似文献   
990.
Multiple time step (MTS) algorithms present an effective integration approach to reduce the computational cost of dynamics simulations. By using force splitting to allow larger time steps for the more slowly varying force components, computational savings can be realized. The Particle-Mesh-Ewald (PME) method has been independently devised to provide an effective and efficient treatment of the long-range electrostatics interactions. Here we examine the performance of a combined MTS/PME algorithm previously developed for AMBER on a large polymerase beta/DNA complex containing 40,673 atoms. Our goal is to carefully combine the robust features of the Langevin/MTS (LN) methodology implemented in CHARMM-which uses position rather than velocity Verlet with stochasticity to make possible outer time steps of 150 fs-with the PME formulation. The developed MTS/PME integrator removes fast terms from the reciprocal-space Ewald component by using switch functions. We analyze the advantages and limitations of the resulting scheme by comparing performance to the single time step leapfrog Verlet integrator currently used in AMBER by evaluating different time-step protocols using three assessors for accuracy, speedup, and stability, all applied to long (i.e., nanosecond) simulations to ensure proper energy conservation. We also examine the performance of the algorithm on a parallel, distributed shared-memory computer (SGI Origin 2000 with 8 300-MHz R12000 processors). Good energy conservation and stability behavior can be demonstrated, for Newtonian protocols with outer time steps of up to 8 fs and Langevin protocols with outer time steps of up to 16 fs. Still, we emphasize the inherent limitations imposed by the incorporation of MTS methods into the PME formulation that may not be widely appreciated. Namely, the limiting factor on the largest outer time-step size, and hence speedup, is an intramolecular cancellation error inherent to PME. This error stems from the excluded-nonbonded correction term contained in the reciprocal-space component. This cancellation error varies in time and introduces artificial frequencies to the governing dynamics motion. Unfortunately, we find that this numerical PME error cannot be easily eliminated by refining the PME parameters (grid resolution and/or order of interpolating polynomial). We suggest that methods other than PME for fast electrostatics may allow users to reap the full advantages from MTS algorithms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号