首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3147篇
  免费   489篇
  国内免费   426篇
化学   2274篇
晶体学   31篇
力学   222篇
综合类   47篇
数学   319篇
物理学   1169篇
  2024年   6篇
  2023年   53篇
  2022年   93篇
  2021年   98篇
  2020年   135篇
  2019年   102篇
  2018年   110篇
  2017年   112篇
  2016年   140篇
  2015年   129篇
  2014年   181篇
  2013年   220篇
  2012年   218篇
  2011年   290篇
  2010年   201篇
  2009年   199篇
  2008年   214篇
  2007年   193篇
  2006年   160篇
  2005年   130篇
  2004年   96篇
  2003年   79篇
  2002年   77篇
  2001年   72篇
  2000年   61篇
  1999年   72篇
  1998年   60篇
  1997年   50篇
  1996年   48篇
  1995年   51篇
  1994年   51篇
  1993年   48篇
  1992年   48篇
  1991年   37篇
  1990年   40篇
  1989年   32篇
  1988年   25篇
  1987年   31篇
  1986年   23篇
  1985年   13篇
  1984年   8篇
  1983年   11篇
  1982年   12篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1957年   4篇
排序方式: 共有4062条查询结果,搜索用时 15 毫秒
191.
采用光-流变学方法研究了丙烯酸酯/液晶复合体系的光聚合凝胶时间及体积收缩率,并与密度法测量的体积收缩率进行了对比.结果表明,该复合体系的凝胶时间小于10 s,光-流变学方法可以在线测量丙烯酸酯单体/液晶复合体系的光聚合体积收缩.以2种不同结构的多面体齐聚倍半硅氧烷(POSS)掺杂丙烯酸酯/液晶复合体系,八甲基丙烯酰氧基倍半硅氧烷(MA-POSS)使丙烯酸酯/液晶复合体系的双键转化率略有降低,掺杂10 wt%MA-POSS使体系的光聚合体积收缩率仅降低了12%;而甲基丙烯酰氧基七异丁基倍半硅氧烷(MI-POSS)对体系双键转化率的影响较小,显著降低了体系的光聚合体积收缩,掺杂10 wt%MI-POSS使体系的光聚合体积收缩率降低29%.  相似文献   
192.
The application of ion chromatography with the column‐switching technique for the simultaneous analysis of peroxydisulfate and conventional inorganic anions in a single run is described. With this method, conventional inorganic anions were separated by consecutive elution through both the guard column and separation column, but peroxydisulfate that only passed through the guard column had a good peak shape and short retention time. A series of standard solutions consisting of target anions of various concentrations from 0.01 to 75 mg/L were analyzed, with a correlation coefficient (r) ≥ 0.9990. The limits of detection were in the range of 0.49–9.84 μg/L based on the S/N of 3 and a 25 μL injection volume. RSDs for retention time, peak area, and peak height were all <1.77%. A spiking study was performed with satisfactory recoveries between 97.6 and 103.4% for all anions. The quantitative determination of peroxydisulfate and conventional inorganic anions in surface waters was accomplished within 18 min by this column‐switching technique.  相似文献   
193.
孟跃  高杨  赵明星  倪生良 《化学通报》2014,77(8):809-813
在室温下,以2-溴苯甲酸和2,2'-联吡啶为配体,通过溶液法在甲醇/水的混合溶剂中反应合成了双核铜(II)配合物Cu2(2,2'-bpy)2(2-bba)4。通过元素分析、红外光谱、热重测试技术和X射线粉末衍射对其进行了结构表征,同时用X射线单晶衍射分析确定了其晶体结构。结果表明,其晶体属正交晶系,空间群为Pbca,晶胞参数:a=20.619(4),b=10.098(2),c=21.865(4),V=4552.5(15)3,Dc=1.808g·cm-3,μ=4.505mm-1,F(000)=2440.0,Z=4,最终残差因子R1=0.0583,wR2=0.1200。配合物为双核结构,每个结构单元中2个Cu(II)离子通过2个2-溴苯甲酸根配体单齿桥联。配合物中的每个Cu(II)离子为五配位的结构,分别和来自2个单齿桥联的2-溴苯甲酸根的2个氧原子、1个单齿配位的2-溴苯甲酸根的1个氧原子及来自1个2,2'-联吡啶的2个氮原子配位形成了畸变的四方锥型结构,分子间则通过弱的C—H…O氢键作用形成了一维链状的结构。CCDC:972827。  相似文献   
194.
Three dimensional Liesegang spherical layers of CaHPO4 in gelatin ball were performed by employing CaCl2 and Na2HPO4 as the inner and outer electrolyte, respectively. Effects of concentrations of inner and outer electrolyte as well as pH on the morphologies of Liesegang rings (LRs) were investigated. As a result, it was observed that the time law, spacing law and width law found in 1D/2D gel systems were obeyed in this 3D gelatin system. The interaction of Ca2+ and HPO4 2? with gelatin matrix played a key role to the formation of LRs due to the existence of carboxylic groups on the gelatin chains. Using Ca2+ as the inner electrolyte, LRs were prepared. However, employing HPO4 2? as inner electrolyte, LRs were not obtained. Moreover, pH of gelatin solution greatly impacted on the formation of LRs. The number of LRs increased with the decrease of pH, whereas the width inversely decreased. pH 4.40 was a turn point, from which the spacing coefficient abruptly increased as pH increased. All these results indicated that the network was created by the interaction of Ca2+ and –COO? of gelatin chains, which dominated the formation of CaHPO4 LRs in gelatin.  相似文献   
195.
The traditional design strategies for highly bright solid-state luminescent materials rely on weakening the intermolecular π–π interactions, which may limit diversity when developing new materials. Herein, we propose a strategy of tuning the molecular packing mode by regioisomerization to regulate the solid-state fluorescence. TBP-e-TPA with a molecular rotor in the end position of a planar core adopts a long-range cofacial packing mode, which in the solid state is almost non-emissive. By shifting molecular rotors to the bay position, the resultant TBP-b-TPA possesses a discrete cross packing mode, giving a quantum yield of 15.6±0.2 %. These results demonstrate the relationship between the solid-state fluorescence efficiency and the molecule's packing mode. Thanks to the good photophysical properties, TBP-b-TPA nanoparticles were used for two-photon deep brain imaging. This molecular design philosophy provides a new way of designing highly bright solid-state fluorophores.  相似文献   
196.
A general graphene quantum dot-tethering design strategy to synthesize single-atom catalysts (SACs) is presented. The strategy is applicable to different metals (Cr, Mn, Fe, Co, Ni, Cu, and Zn) and supports (0D carbon nanosphere, 1D carbon nanotube, 2D graphene nanosheet, and 3D graphite foam) with the metal loading of 3.0–4.5 wt %. The direct transmission electron microscopy imaging and X-ray absorption spectra analyses confirm the atomic dispersed metal in carbon supports. Our study reveals that the abundant oxygenated groups for complexing metal ions and the rich defective sites for incorporating nitrogen are essential to realize the synthesis of SACs. Furthermore, the carbon nanotube supported Ni SACs exhibits high electrocatalytic activity for CO2 reduction with nearly 100 % CO selectivity. This universal strategy is expected to open up new research avenues to produce SACs for diverse electrocatalytic applications.  相似文献   
197.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   
198.
Volume expansion and polysulfide shuttle effect are the main barriers for the commercialization of lithium-sulfur(Li-S) battery.In this work,we in-situ polymerized a cross-linked binder in sulfur cathode to solve the aforementioned problems using a facile method under mild conditions.Polycarbonate diol(PCDL),triethanolamine(TEA) and hexamethylene diisocyanate(HDI) were chosen as precursors to prepare the cross-linked binder.The in-situ polymerized binder(PTH) builds a strong network in sulfur cathode,which could restrain the volume expansion of sulfu r.Moreover,by adopting functional groups of oxygen atoms and nitrogen atoms,the binder could effectively facilitate transportation of Li-ion and adsorb polysulfide chemically.The Li-S battery with bare sulfur and carbon/sulfur composite cathodes and cross-linked PTH binder displays much better electrochemical performance than that of the battery with PVDF.The PTH-bare S cathode with a mass loading of 5.97 mg/cm^2 could deliver a capacity of 733.3 mAh/g at 0.2 C,and remained 585.5 mAh/g after 100 cycles.This in-situ polymerized binder is proved to be quite effective on restraining the volume expansion and suppressing polysulfide shuttle effect,then improving the electrochemical performance of Li-S battery.  相似文献   
199.
A method for the stereoselective [4+2]‐cycloaddition of alkenylboranes and dienes is presented. This transformation was accomplished through the introduction of a new strategy that involves the use of chiral N‐protonated alkenyl oxazaborolidines as dieneophiles. The reaction leads to the formation of products that can be readily derivatized to more complex structural motifs through stereospecific transformations of the C?B bond such as oxidation and homologation. Detailed computation evaluation of the reaction has uncovered a surprising role of the counterion on stereoselectivity.  相似文献   
200.
In this research, molecular imprinting polymers (MIPs) for D-arabinitol were synthesized using a bulk polymerization method through a noncovalent approach. The MIPs were prepared by using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylateas cross-linker, benzoyl peroxide as an initiator and dimethyl sulfoxideas a porogen. MIPS was synthesized in several formulas with a different molar ratio of template to functional monomers and cross-linker. Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to characterize the MIPs produced. A batch rebinding assay was used to test the binding efficiency of each formula. Batch rebinding test results revealed that MIPsF3 with a molar ratio of the template: monomer and crosslinker ratio respectively (1: 4: 25) had the highest binding capacity at 1.56 mgg -1 . The results of isotherm adsorption showed that the MIPs produced followed the Freundlich equation with an R-value of 0.97. The MIPs produced was also selective toward its isomeric compounds (i.e. L-arabinitol, adonitol, xylitol, and glucose). The extraction efficiency of the MIPs against D-arabinitol was 88.98%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号