首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15893篇
  免费   2642篇
  国内免费   3262篇
化学   12723篇
晶体学   217篇
力学   953篇
综合类   279篇
数学   2007篇
物理学   5618篇
  2024年   50篇
  2023年   373篇
  2022年   622篇
  2021年   620篇
  2020年   753篇
  2019年   757篇
  2018年   590篇
  2017年   665篇
  2016年   880篇
  2015年   886篇
  2014年   977篇
  2013年   1312篇
  2012年   1285篇
  2011年   1419篇
  2010年   1003篇
  2009年   1001篇
  2008年   1091篇
  2007年   900篇
  2006年   847篇
  2005年   787篇
  2004年   625篇
  2003年   579篇
  2002年   665篇
  2001年   537篇
  2000年   430篇
  1999年   362篇
  1998年   244篇
  1997年   170篇
  1996年   206篇
  1995年   169篇
  1994年   186篇
  1993年   144篇
  1992年   97篇
  1991年   110篇
  1990年   114篇
  1989年   57篇
  1988年   49篇
  1987年   45篇
  1986年   53篇
  1985年   41篇
  1984年   20篇
  1983年   25篇
  1982年   12篇
  1981年   10篇
  1980年   4篇
  1979年   4篇
  1971年   1篇
  1959年   4篇
  1957年   7篇
  1936年   6篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Reversed‐phase liquid chromatography coupled with middle chromatogram isolated gel column was employed for the efficient preparative separation of the arylbutanoid‐type phenol [(‐)‐rhododendrin] from Saxifraga tangutica. Universal C18 (XTerra C18) and XCharge C18 columns were compared for (‐)‐rhododendrin fraction analysis and preparation. Although tailing and overloading occurred on the XTerra C18 column, the positively charged reversed‐phase C18 column (XCharge C18) overcame these drawbacks, allowing for favorable separation resolution, even when loading at a on a preparative scale (3.69 mg per injection). The general separation process was as follows. First, 365.0 mg of crude (‐)‐rhododendrin was enriched from 165 g Saxifraga tangutica extract via a middle chromatogram isolated gel column. Second, separation was performed on an XTerra C18 preparative column, from which 73.8 mg of the target fraction was easily obtained. Finally, the 24.0 mg tailing peak of (‐)‐rhododendrin on XTerra C18 column was selectively purified on the XCharge C18 analytical column. These results demonstrate that the tailing nonalkaloid peaks can be effectively used for preparative isolation on XCharge C18 columns.  相似文献   
992.
In this work, dual‐mode antibacterial conjugated polymer nanoparticles (DMCPNs) combined with photothermal therapy (PTT) and photodynamic therapy (PDT) are designed and explored for efficient killing of ampicillin‐resistant Escherichia coli (Ampr E. coli). The DMCPNs are self‐assembled into nanoparticles with a size of 50.4 ± 0.6 nm by co‐precipitation method using the photothermal agent poly(diketopyrrolopyrrole‐thienothiophene) (PDPPTT) and the photosensitizer poly[2‐methoxy‐5‐((2‐ethylhexyl)oxy)‐p‐phenylenevinylene] (MEH‐PPV) in the presence of poly(styrene‐co‐maleic anhydride) which makes nanoparticles disperse well in water via hydrophobic interactions. Thus, DMCPNs simultaneously possess photothermal effect and the ability of sensitizing oxygen in the surrounding to generate reactive oxygen species upon the illumination of light, which could easily damage resistant bacteria. Under combined irradiation of near‐infrared light (550 mW cm?2, 5 min) and white light (65 mW cm?2, 5 min), DMCPNs with a concentration of 9.6 × 10?4 µm could reach a 93% inhibition rate against Ampr E. coli, which is higher than the efficiency treated by PTT or PDT alone. The dual‐mode nanoparticles provide potential for treating pathogenic infections induced by resistant microorganisms in clinic.  相似文献   
993.
Since tetrazines are important tools to the field of bioorthogonal chemistry, there is a need for new approaches to synthesize unsymmetrical and 3‐monosubstituted tetrazines. Described here is a general, one‐pot method for converting (3‐methyloxetan‐3‐yl)methyl carboxylic esters into 3‐thiomethyltetrazines. These versatile intermediates were applied to the synthesis of unsymmetrical tetrazines through Pd‐catalyzed cross‐coupling and in the first catalytic thioether reduction to access monosubstituted tetrazines. This method enables the development of new tetrazine compounds possessing a favorable combination of kinetics, small size, and hydrophilicity. It was applied to a broad range of aliphatic and aromatic ester precursors and to the synthesis of heterocycles including BODIPY fluorophores and biotin. In addition, a series of tetrazine probes for monoacylglycerol lipase (MAGL) were synthesized and the most reactive one was applied to the labeling of endogenous MAGL in live cells.  相似文献   
994.
Controlling the solution‐state aggregation of conjugated polymers for producing specific microstructures remains challenging. Herein, a practical approach is developed to finely tune the solid‐state microstructures through temperature‐controlled solution‐state aggregation and polymer crystallization. High temperature generates significant conformation fluctuation of conjugated backbones in solution, which facilitates the polymer crystallization from solvated aggregates to orderly packed structures. The polymer films deposited at high temperatures exhibit less structural disorders and higher electron mobilities (up to two orders of magnitude) in field‐effect transistors, compared to those deposited at low temperatures. This work provides an effective strategy to tune the solution‐state aggregation to reveal the relationship between solution‐state aggregation and solid‐state microstructures of conjugated polymers.  相似文献   
995.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   
996.
A key issue of micro/nano devices is how to integrate micro/nanostructures with specified chemical components onto various curved surfaces. Hydrodynamic printing of micro/nanostructures on three‐dimensional curved surfaces is achieved with a strategy that combines template‐induced hydrodynamic printing and self‐assembly of nanoparticles (NPs). Non‐lithography flexible wall‐shaped templates are replicated with microscale features by dicing a trench‐shaped silicon wafer. Arising from the capillary pumped function between the template and curved substrates, NPs in the colloidal suspension self‐assemble into close‐packed micro/nanostructures without a gravity effect. Theoretical analysis with the lattice Boltzmann model reveals the fundamental principles of the hydrodynamic assembly process. Spiral linear structures achieved by two kinds of fluorescent NPs show non‐interfering photoluminescence properties, while the waveguide and photoluminescence are confirmed in 3D curved space. The printed multiconstituent micro/nanostructures with single‐NP resolution may serve as a general platform for optoelectronics beyond flat surfaces.  相似文献   
997.
Engineering synthetic materials that mimic the complex rhythmic oscillatory behavior of living cells is a fundamental challenge in science and technology. Up to now, the reported synthetic model system still cannot compete with nature in oscillatory modes and amplitudes. Presented here is a novel alternating copolymer vesicle that exhibits drastic and multimode shape oscillations in real time, which are controlled by polymer concentrations and driven by the Belousov—Zhabotinsky oscillatory reaction, including swelling/deswelling, twisting/detwisting, stretching/shrinking, fusion/fission, and multiple division. Some of them, especially the fission oscillation, have not been observed before. In addition, the oscillation magnitude with regard to diameter is much larger than that of previously reported self‐oscillating vesicles. Such a self‐oscillating vesicle transformer would extend the complexity and capacity of membrane deformations in synthetic systems, approaching those of natural cells.  相似文献   
998.
999.
Curcumin widely exists in food, and rapid selective and accurate detection of curcumin have great significance in chemical industry. In this experiment, a new magnetic biocompatibility molecularly imprinted polymer was prepared with nontoxic and biocompatible Zein to adsorb curcumin selectively. The polymer has high biocompatibility, good adsorption capacity, and specific adsorption for curcumin. Combined with portable electrochemical workstations, the polymer can be used to detect curcumin rapidly and cost‐effectively. Using curcumin as a template and Zein as the crosslinking agent, the polymers were synthesized on the surface of Fe3O4 particles for solid phase extraction. The experimental results showed that the polymer reached large adsorption capacity (32.12 mg/g) with fast kinetics (20 min). The adsorption characteristic of the polymer followed the Langmuir isotherm and pseudo‐second‐order kinetic models. Hexacyanoferrate was used as electrochemical probe to generate signals, and the linear range was 5–200 µg/mL for measuring curcumin. The experimental analysis showed that the polymer was an ideal material for selective accumulation of curcumin from complex samples. This approach has been successfully applied to the determination of curcumin in food samples with electrochemical detection, indicating that this is a feasible and practical technique.  相似文献   
1000.
We investigated crude Aster tataricus, vinegar‐processed Aster tataricus, honey‐processed Aster tataricus, and steamed Aster tataricus as a case study and developed a comprehensive strategy integrating quantitative analysis and chemical pattern recognition methods for the evaluation and differentiation of Aster tataricus from different regions, as well as related processed products. In the study, 15 batches of raw Aster tataricus collected from seven provinces were analyzed. A sensitive and rapid ultra‐high performance liquid chromatography with tandem mass spectrometry method for simultaneous determination of 15 compounds was established to evaluate the quality of raw and processed Aster tataricus. Furthermore, multivariate statistical techniques were applied to compare the differences among Aster tataricus samples. As a result, the herbs collected from seven provinces were divided into two categories, and chlorogenic acid was the most important component distinguishing between the regions. Moreover, all of the raw and processed samples were classified by partial least squares discriminant analysis based on the 15 analyzed compounds. Results showed that raw Aster tataricus, vinegar‐processed Aster tataricus, honey‐processed Aster tataricus, and steamed Aster tataricus were clustered in four different areas. Shionone, chlorogenic acid and kaempferol were the significant constituents differentiating the raw and differently processed Aster tataricus samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号