首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17837篇
  免费   2474篇
  国内免费   2521篇
化学   13265篇
晶体学   217篇
力学   998篇
综合类   194篇
数学   2004篇
物理学   6154篇
  2024年   22篇
  2023年   335篇
  2022年   549篇
  2021年   692篇
  2020年   744篇
  2019年   727篇
  2018年   554篇
  2017年   606篇
  2016年   846篇
  2015年   826篇
  2014年   951篇
  2013年   1374篇
  2012年   1463篇
  2011年   1559篇
  2010年   1143篇
  2009年   1038篇
  2008年   1236篇
  2007年   1037篇
  2006年   973篇
  2005年   872篇
  2004年   733篇
  2003年   614篇
  2002年   657篇
  2001年   483篇
  2000年   403篇
  1999年   352篇
  1998年   279篇
  1997年   208篇
  1996年   236篇
  1995年   186篇
  1994年   180篇
  1993年   154篇
  1992年   122篇
  1991年   146篇
  1990年   117篇
  1989年   66篇
  1988年   62篇
  1987年   49篇
  1986年   49篇
  1985年   53篇
  1984年   28篇
  1983年   28篇
  1982年   19篇
  1981年   12篇
  1980年   9篇
  1979年   5篇
  1973年   4篇
  1971年   7篇
  1970年   6篇
  1936年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Hydroxyapatite (HAP), a well‐known member of the calcium phosphate family, is the major inorganic component of bones and teeth in vertebrates. The highly ordered arrays of HAP structures are of great significance for hard tissue repair and for understanding the formation mechanisms of bones and teeth. However, the synthesis of highly ordered HAP structure arrays remains a great challenge. In this work, inspired by the ordered structure of tooth enamel, we have successfully synthesized three‐dimensional bulk materials with large sizes (millimeter scale) that are made of highly ordered arrays of ultralong HAP microtubes (HOAUHMs) by solvothermal transformation of calcium oleate precursor. The core–shell‐structured oblate sphere consists of a core that is composed of HAP nanorods and a shell that consists of highly ordered HAP microtube arrays. The prepared HOAUHMs are large: 6.0 mm in diameter and up to 1.4 mm in thickness. With increasing solvothermal reaction time, the HOAUHMs grow larger; the microtubes become more uniform and more ordered. This work provides a new synthetic method for synthesizing highly ordered arrays of uniform HAP ultralong microtubes that are promising for biomedical applications.  相似文献   
992.
Hanji paper, the paper material traditionally used in Korea, is in the focus of the present aging and mechanistic study. As raw materials and historic recipes for paper making are still available for Hanji today, specimen resembling historical material at the point of production can be prepared. While from that starting point, historical material had taken the path of natural aging, newly prepared samples—prepared according to both historic and current recipes—were artificially aged, and both aging modes can be compared. For the first time, an in-depth chemical and mathematical analysis of the aging processes for Hanji is presented. The aging of Hanji paper, resulting in hydrolysis and oxidation processes, was addressed by means of selective fluorescene labeling of oxidized groups in combination with gel permeation chromatography, providing profiles of carbonyl and carboxyl groups relative to the molar mass distribution. Starting Hanji showed the highest molecular weight (>1,400 kDa) ever reported for paper. We have defined two critical parameters for comparison of the paper samples: half-life DP (the time until every chain is split once on average) and life expectancy (the time until an average DP of failure is reached and no further mechanical stress can be tolerated). The two values were determined to be approximately 500 and 4,000 years, respectively, for the Hanji samples, provided there is no UV radiation. The rate of cellulose chain scission under accelerated aging (80 °C, RH 65 %), was about 600 times faster than under natural conditions. In addition, cellulose degradation of Hanji paper under accelerated aging condition was about 2–3 times slower than that of historical rag paper as those used in medieval Europe.  相似文献   
993.
Moisture sorption decreases dimensional stability and mechanical properties of polymer matrix biocomposites based on plant fibers. Cellulose nanofiber reinforcement may offer advantages in this respect. Here, wood-based nanofibrillated cellulose (NFC) and bacterial cellulose (BC) nanopaper structures, with different specific surface area (SSA), ranging from 0.03 to 173.3 m2/g, were topochemically acetylated and characterized by ATR-FTIR, XRD, solid-state CP/MAS 13C-NMR and moisture sorption studies. Polymer matrix nanocomposites based on NFC were also prepared as demonstrators. The surface degree of substitution (surface-DS) of the acetylated cellulose nanofibers is a key parameter, which increased with increasing SSA. Successful topochemical acetylation was confirmed and significantly reduced the moisture sorption in nanopaper structures, especially at RH = 53 %. BC nanopaper sorbed less moisture than the NFC counterpart, and mechanisms are discussed. Topochemical NFC nanopaper acetylation can be used to prepare moisture-stable nanocellulose biocomposites.  相似文献   
994.
Binary polymer blends of hydrophobic poly(vinylidene fluoride) (PVDF) and hydrophilic poly(vinylpyrrolidone) (PVP) were prepared by melt blending. The crystallization behavior, mechanical properties and hydrophilicity of the binary blends were investigated using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (WAXD), differential scanning calorimeter (DSC) scanning, non-isothermal crystallization kinetics, successive self-nucleation and annealing (SSA) fractionation, tensile tests and contact angle tests. The analysis of FTIR, WAXD, DSC scanning, non-isothermal crystallization kinetics and SSA fractionation showed that the addition of PVP greatly influenced the crystallization behavior of the sample. As the PVP content increased, the crystallization temperature, crystallization rate, degree of crystallinity, and the amount of thick lamellaes decreased gradually. Meanwhile, PVP favored the formation of β-phase of PVDF. The results of tensile test revealed that the addition of PVP increased the elongation at break of the sample, and lowered the yield stress. Besides, the result of contact angle test indicated that the hydrophilicity of PVDF was remarkably improved in the presence PVP. The relationship between crystallization behavior and the tensile behavior, hydrophilicity were discussed.  相似文献   
995.
We examined the acid–base properties of water films adsorbed onto a Ru(0001) substrate by using surface spectroscopic methods in vacuum environments. Ammonia adsorption experiments combined with low‐energy sputtering (LES), reactive ion scattering (RIS), reflection–absorption infrared spectroscopy (RAIRS) and temperature‐programmed desorption (TPD) measurements showed that the adsorbed water is acidic enough to transfer protons to ammonia. Only the water molecules in an intact water monolayer and water clusters larger than the hexamer exhibit such acidity, whereas small clusters, a thick ice film or a partially dissociated water monolayer that contains OH, H2O and H species are not acidic. The observations indicate the orientation‐specific acidity of adsorbed water. The acidity stems from water molecules with H‐down adsorption geometry present in the monolayer. However, the dissociation of water into H and OH on the surface does not promote but rather suppresses the proton transfer to ammonia.  相似文献   
996.
采用高温固相法,在还原气氛下制备出Al2O3/蒙脱土:Eu2+光致发光材料。研究了原料配比、烧结温度、保温时间以及激活剂Eu2+的含量对发光性能的影响。实验结果表明:加入蒙脱土后,所制备的样品仍保持Al2O3的架状结构,晶格常数发生变化,晶体产生畸变,使得Eu2+更容易进入到晶格中。荧光光谱分析显示,发射光谱是两个宽峰组成,对应于Eu2+的4f65d→4f7(8S7/2)宽带允许跃迁。发光机制分析认为,宽峰结构由Eu0.92[Al1.76Si2.24O8]新相产生,生成的新相增加了Eu2+的取代格位,形成新的发光中心。因此Eu2+不仅取代了Al2O3八面体中Al的格位,而且取代了蒙脱土层间所吸附的阳离子格位,使样品发光强度提高了220%。  相似文献   
997.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N? H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C? H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C? H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   
998.
The practical utility of ionic liquids (ILs) makes the absence (heretofore) of reported examples from nature quite puzzling, given the facility with which nature produces many other types of exotic but utilitarian substances. In that vein, we report here the identification and characterization of a naturally occurring protic IL. It can be formed during confrontations between the ants S. invicta and N. fulva. After being sprayed with alkaloid‐based S. invicta venom, N. fulva detoxifies by grooming with its own venom, formic acid. The mixture is a viscous liquid manifestly different from either of the constituents. Further, we find that the change results as a consequence of formic acid protonation of the N centers of the S. invicta venom alkaloids. The resulting mixed‐cation ammonium formate milieu has properties consistent with its classification as a protic IL.  相似文献   
999.
Shape‐persistent covalent organic polyhedrons (COPs) with ethynylene linkers are usually prepared through kinetically controlled cross‐coupling reactions. The high‐yielding synthesis of ethynylene‐linked rigid tetrameric cages via one‐step alkyne metathesis from readily accessible triyne precursors is presented. The tetrameric cage contains two macrocyclic panels and exhibits D2h symmetry. The assembly of such a COP is a thermodynamically controlled process, which involves the initial formation of macrocycles as key intermediates followed by the connection of two macrocycles with ethynylene linkages. With a large internal cavity, the cage exhibits a high binding selectivity toward C70 (K=3.9×103 L mol?1) over C60 (no noticeable binding).  相似文献   
1000.
A novel strategy involving Cu‐catalyzed oxidative transformation of ketone‐derived hydrazone moiety to various synthetic valuable internal alkynes and diynes has been developed. This method features inexpensive metal catalyst, green oxidant, good functional group tolerance, high regioselectivity and readily available starting materials. Oxidative deprotonation reactions were carried out to form internal alkynes and symmetrical diynes. Cross‐coupling reactions of hydrazones with halides and terminal alkynes were performed to afford functionalized alkynes and unsymmetrical conjugated diynes. A mechanism proceeding through a Cu‐carbene intermediate is proposed for the C? C triple bond formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号