首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   11篇
物理学   2篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2012年   2篇
  2011年   5篇
排序方式: 共有13条查询结果,搜索用时 5 毫秒
11.
Our work in metal fluorosulphate chemistry, which was triggered by the discovery of the tavorite-phase of LiFeSO4F, has unveiled many novel Li- and Na-based phases with desirable electrochemical and/or transport properties. Further exploring this rich crystal chemistry, we have synthesized the Na-based magnesium, copper and zinc fluorosulphates, which crystallise in the maxwellite (tavorite-like framework) structure just as their Fe and Co counterparts, which were previously reported. These phases show ionic conductivities in the range of ∼10−7 S cm−1 or ∼10−11 S cm−1 depending upon their synthesis process and no reversible electrochemical activity versus Na.  相似文献   
12.
Recently unveiled ‘alkali metal fluorosulphate (AMSO4F)’ class of compounds offers promising electrochemical and transport properties. Registering conductivity value as high as 10−7 S cm−1 in NaMSO4F phases, we explored the fluorosulphate group to design novel compounds with high Li-ion conductivity suitable for solid electrolyte applications. In the process, we produced sillimanite-structured LiZnSO4F by low temperature synthesis (T ≤ 300 °C). Examining this phase, we accidentally discovered the possibility of improving the ionic conductivity of poor conductors by forming a monolayer of ionic liquid at their particle surface. This phenomenon was studied by solid-state NMR, XPS and AC impedance spectroscopy techniques. Further, similar trends were noticed in other fluorosulphate materials like tavorite LiCoSO4F and triplite LiMnSO4F. With this study, we propose ‘ionic liquid grafting’ as an interfacial route to enable good Li-ion conductivity in otherwise poor conducting ceramics.  相似文献   
13.
A three-dimensional, Fast-Fourier-Transformed (3D-FFT) micromagnetic simulation was employed to study the magnetization reversal mechanisms in cylindrical nickel nanobars possessing magnetic vortices. Individual Ni nanobars of height 150–250 nm with aspect ratio varying from 2.1 to 2.5 were considered, all of them supporting magnetic vortices domains. Magnetization reversal in these nanobars involves the vortex-creation–annihilation (VCA) mechanism with an inversion symmetry feature observed mid-way during reversal process. The effect of incidence angle of externally applied field on overall magnetization reversal process is examined in detail. The corresponding variations in coercivity, squareness, exchange energy and vortex parameters are described by the micromagnetic study that can shed insights for building practical Ni nanobars magnetic nanostructures/devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号