首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   16篇
  国内免费   8篇
化学   308篇
晶体学   4篇
力学   27篇
数学   48篇
物理学   118篇
  2016年   5篇
  2015年   7篇
  2013年   11篇
  2012年   14篇
  2011年   46篇
  2010年   32篇
  2009年   13篇
  2008年   17篇
  2007年   25篇
  2006年   23篇
  2005年   25篇
  2004年   43篇
  2003年   27篇
  2002年   24篇
  2001年   20篇
  2000年   17篇
  1999年   3篇
  1998年   10篇
  1997年   4篇
  1996年   10篇
  1995年   6篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   11篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1971年   2篇
  1969年   4篇
  1964年   2篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
  1936年   2篇
  1935年   2篇
  1924年   2篇
  1923年   2篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
281.
282.
The reflection of a planar solitary wave at a vertical wall is investigated by solving the Boussinesq equations analytically as well as numerically. The analytical solution is obtained by means of the inner-outer expansions technique, while the numerical solution is based on a finite-difference scheme. The maximum wave amplitude at the wall and the time at which this maximum amplitude is reached are presented. It is also found that the incident wave does not reflect immediately at the wall as predicted by the linear wave theory. Rather, the wave suffers a time delay, called the phase lag, during the reflection process. This phase lag is found to be inversely proportional to the square root of the initial wave amplitude. As the reflected wave eventually propagates away from the wall, it has a phase shift in comparison with that obtained by the linear wave theory. The analytical results obtained in this paper are in good agreement with the numerical results, and they also agree fairly well with the existing experimental data.  相似文献   
283.
Results relating the spectra and essential spectra of Hankel operators to their symbols are obtained by various considerations of the C1-algebras that they generate. Such considerations exploit the elementary relationships between Hankel operators and Toeplitz operators and established techniques in the theory of Toeplitz operators and their generated C1-algebras.  相似文献   
284.
The structure of tetraacetylethane has been determined by neutron diffraction. The compound exists in the dienolic form, the enolic hydrogen being intramolecularly bonded to a neighbouring oxygen in a clearly asymmetric mode. The acetylacetonate residues are essentially planar.  相似文献   
285.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   
286.
Summary A method is presented which derives the solution to Poisson's equation in two dimensions, subject to boundary conditions of sufficient generality to be applicable to many branches of mathematical physics. In the first instance, a circular boundary is considered, and by means of conformal transformation an indication is given showing how the solution can be adapted to other boundary shapes.  相似文献   
287.
Summary A reciprocal property for the two-dimentional, irrotational flow of a compressible fluid is derived. From this certain flows can be obtained which possess the property of having simply-related velocity potentials and stream functions. To each flow pattern there corresponds a certain pressure density law. Using this property, an approximation method for subsonic flow is deduced, and an example is given which indicates that satisfactorily accurate results can be achieved.  相似文献   
288.
To gain insight into the effects of liquid-liquid phase separation on molecular relaxation behavior we have studied an apparently homogeneous mixture of 5-methyl-2-hexanol and isoamylbromide by dielectric spectroscopy over a broad temperature range. It shows two relaxation regions, widely separated in frequency and temperature, with the low-frequency relaxation due to the alcohol and the high-frequency relaxation due to the halide. In the mixture, the equilibrium dielectric permittivity epsilon(s) of the alcohol is 41% of the pure state at 155.7 K and epsilon(s) of isoamylbromide is approximately 86% of the pure state at 128.7 K. The difference decreases for the alcohol component with decreasing temperature and increases for the isoamylbromide component. The relaxation time tau of 5-methyl-2-hexanol in the mixture at 155.7 K is over five orders of magnitude less than in the pure state, and this difference increases with decreasing temperature, but tau of isoamylbromide in the mixture is marginally higher than in the pure liquid. This shows that the mixture would have two T(g)'s corresponding to its tau of 10(3) s, with values of approximately 121 K for its 5-methyl-2-hexanol component and approximately 108 K for its isoamylbromide component. It is concluded that the mixture phase separates in submicron or nanometer-size aggregates of the alcohol in isoamylbromide, without affecting the latter's relaxation kinetics, while its own epsilon(s) and tau decrease markedly.  相似文献   
289.
The synthesis and structural characterization of the first homologous, molecular M-M bonded series for the group 12 metals are reported. The compounds Ar'MMAr' (M = Zn, Cd, or Hg; Ar' = C(6)H(3)-2,6-(C(6)H(3)-2,6-Pr(i)(2))(2)) were synthesized by reduction of the corresponding arylmetal halides by alkali metal/graphite (Zn or Hg) or sodium hydride (Cd). These compounds possess almost linear C-M-M-C core structures with two-coordinate metals. The observed M-M bonds distances were 2.3591(9), 2.6257(5), and 2.5738(3) A for the zinc, cadmium, and mercury species, respectively. The shorter Hg-Hg bond in comparison to that of Cd-Cd is consistent with DFT calculations which show that the strength of the Hg-Hg bond is greater. The arylmetal halides precursors (Ar'MI)(1 or 2), and the highly reactive hydrides (Ar'MH)(1 or 2), were also synthesized and fully characterized by X-ray crystallography (Zn and Cd) and multinuclear NMR spectroscopy. The arylzinc and arylcadmium iodides have iodide-bridged dimeric structures, whereas the arylmercury iodide, Ar'HgI, is monomeric. The arylzinc and arylcadmium hydrides have symmetric (Zn) or unsymmetric (Cd) mu-H-bridged structures. The Ar'HgH species was synthesized and characterized by spectroscopy, but a satisfactory refinement of the structure was precluded by the contamination of monomeric Ar'HgH by Ar'H. It was also shown that the decomposition of Ar'Cd(mu-H)(2)CdAr' at room temperature leads to the M-M bonded Ar'CdCdAr', thereby supporting the view that the reduction of the iodide proceeds via the hydride intermediate.  相似文献   
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号