首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2651篇
  免费   82篇
  国内免费   29篇
化学   1709篇
晶体学   13篇
力学   55篇
数学   551篇
物理学   434篇
  2023年   10篇
  2022年   67篇
  2021年   100篇
  2020年   41篇
  2019年   56篇
  2018年   55篇
  2017年   49篇
  2016年   98篇
  2015年   74篇
  2014年   108篇
  2013年   192篇
  2012年   177篇
  2011年   185篇
  2010年   126篇
  2009年   122篇
  2008年   143篇
  2007年   161篇
  2006年   147篇
  2005年   153篇
  2004年   121篇
  2003年   84篇
  2002年   60篇
  2001年   29篇
  2000年   26篇
  1999年   30篇
  1998年   22篇
  1997年   29篇
  1996年   24篇
  1995年   30篇
  1994年   22篇
  1993年   22篇
  1992年   14篇
  1991年   18篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   10篇
  1985年   22篇
  1984年   14篇
  1983年   11篇
  1982年   13篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1915年   3篇
  1913年   4篇
排序方式: 共有2762条查询结果,搜索用时 328 毫秒
991.
We consider model systems consisting of a methane molecule and hemispherical pockets of subnanometer radii whose walls are made of hydrophobic material. The potential of mean force for process of translocation of the methane molecule from bulk water into the pockets' interior is obtained, based on an explicit solvent molecular dynamics simulations. Accompanying changes in water density around the interacting objects and spatial distribution of solvent's potential energy are analyzed, allowing for interpretation of details of hydrophobic interactions in relation to hydrophobic hydration properties. Applicability of surface area-based models of hydrophobic effect for systems of interest is also investigated. A total work for the translocation process is not dependent on pocket's size, indicating that pocket desolvation has little contribution to free energy changes, which is consistent with the observation that solvent density is significantly reduced inside "unperturbed" pockets. Substantial solvent effects are shown to have a longer range than in case of a well investigated methane pair. A desolvation barrier is present in a smaller pocket system but disappears in the larger one, suggesting that a form of a "hydrophobic collapse" is observed.  相似文献   
992.
The recently developed [P. Piecuch and M. Wloch, J. Chem. Phys. 123, 224105 (2005)] size-extensive left eigenstate completely renormalized (CR) coupled-cluster (CC) singles (S), doubles (D), and noniterative triples (T) approach, termed CR-CC(2,3) and abbreviated in this paper as CCL, is compared with the full configuration interaction (FCI) method for all possible types of single bond-breaking reactions between C, H, Si, and Cl (except H2) and the H2Si[Double Bond]SiH2 double bond-breaking reaction. The CCL method is in excellent agreement with FCI in the entire region R=1-3Re for all of the studied single bond-breaking reactions, where R and Re are the bond distance and the equilibrium bond length, respectively. The CCL method recovers the FCI results to within approximately 1 mhartree in the region R=1-3Re of the H-SiH3, H-Cl, H3Si-SiH3, Cl-CH3, H-CH3, and H3C-SiH3 bonds. The maximum errors are -2.1, 1.6, and 1.6 mhartree in the R=1-3Re region of the H3C-CH3, Cl-Cl, and H3Si-Cl bonds, respectively, while the discrepancy for the H2Si[Double Bond]SiH2 double bond-breaking reaction is 6.6 (8.5) mhartree at R=2(3)Re. CCL also predicts more accurate relative energies than the conventional CCSD and CCSD(T) approaches, and the predecessor of CR-CC(2,3) termed CR-CCSD(T).  相似文献   
993.
Three modes of sample application on the chromatographic plate are applied at present investigations of pressurized planar electrochromatography (PPEC) systems taking into special attention their influence on performance of the separating system. These modes are as follows: application of the sample solution directly on the chromatographic plate with microsyringe, deposition of sample solution on scrap of adsorbent layer followed by location oft this scrap on the chromatographic plate, application of the sample solution with commercially available aerosol applicator. These modes were combined with prewetting procedures of the chromatographic plates which lead to an accomplishment of equilibration of the stationary phase-mobile phase system. The plots of plate height versus linear flow rate of the mobile phase are presented for PPEC systems for the first time. The best separation performance has been obtained in PPEC system when prewetting of the chromatographic plate followed the sample application with commercially available aerosol applicator. The higher repeatability of migration distance of the solute bands has been obtained in PPEC experiments when the sample application was followed by prewetting the chromatographic plate in comparison to the experiments when these operations were performed in reversed order.  相似文献   
994.
The influence of a first (anchoring) layer and film treatment on the structure and properties of polyelectrolyte multilayer (PEM) films obtained from polyallylamine hydrochloride (PAH) and polysodium 4-styrenesulfonate (PSS) was studied. Branched polyethyleneimine (PEI) was used as an anchoring layer. The film thickness was measured by ellipsometry. Complementary X-ray reflectometry and AFM experiments were performed to study the change in the interfacial roughness. We found that the thickness of the PEM films increased linearly with the number of layers and depended on the presence of an anchoring PEI layer. Thicker films were obtained for multilayers having PEI as the first layer comparing to films having the same number of layers but consisting of PAH/PSS only. We investigated the wettability of PEM surfaces using direct image analysis of the shape of sessile water drops. Periodic oscillations in contact angle were observed. PAH-terminated films were more hydrophobic than films with PSS as the outermost layer. The effect of long time conditioning of PEM films in solutions of various pH's or salt (NaCl) concentrations was also examined. Salt or base solutions induced modification in wetting properties of the polyelectrolyte multilayers but had a negligible effect on the film thickness.  相似文献   
995.
Crystalline solvates of olanzapine (1), 2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine, have been characterized by an X-ray analysis and thermal (DSC) data. Crystallization of 1 from ethanol gives a solid containing both water and ethanol molecules; the solvate 1 · H2O · EtOH (2:2:1) is monoclinic with the space group P21/c and the unit-cell volume V = 3752.8(12) Å3. Butan-2-ol forms with 1 solvate which is also a three-component phase, 1 · H2O · BuOH, but its stoichiometry is different (1:1:1). The space group for this crystal is P21/c and the unit-cell volume V = 2216.5(7) Å3. Crystalline olanzapine dichloromethane solvate (2:1), 1 · CH2Cl2, is triclinic with the space group .The characteristic feature of all crystal structures is presence of a pair of olanzapine molecules which form dimer stabilized by multiple weak C–Hπ interactions between the N-methylpiperazine fragment and the phenyl / thiophene systems. Theoretical calculations have been performed indicating that the total C–Hπ binding energy is about 8 kcal mol−1. In the crystal structure, the self-assembled olanzapine molecular dimers are arranged into parallel crystal planes. Packing of the layers proceeds in two ways in which structural motives are replicated by (i) perpendicular translation forming columns, and (ii) rotation around the twofold screw axis (parallel to the layer).  相似文献   
996.
In the present work, we report the successful synthesis and characterization of six (two new) fullerene mono- and di-pyrene derivatives based on C60 and C70 fullerenes. The synthesized compounds were characterized by spectral methods (ESI-MS, 1H-NMR, 13C-NMR, UV-Vis, FT-IR, photoluminescence and photocurrent spectroscopy). The energy of HOMO and LUMO levels and the band gaps were determined from cyclic voltammetry and compared with the theoretical values calculated according to the DFT/B3LYP/6-31G(d) and DFT/PBE/6-311G(d,p) approach for fully optimized molecular structures at the DFT/B3LYP/6-31G(d) level. Efficiency of solar cells made of PTB7: C60 and C70 fullerene pyrene derivatives were analyzed based on the determined energy levels of the HOMO and LUMO orbitals of the derivatives as well as the extensive spectral results of fullerene derivatives and their mixtures with PTB7. As a result, we found that the electronic and spectral properties, on which the efficiency of a photovoltaic cell is believed to depend, slightly changes with the number and type of pyrene substituents on the fullerene core. The efficiency of constructed solar cells largely depends on the homogeneity of the photovoltaic layer, which, in turn, is a derivative of the solubility of fullerene derivatives in the solvent used to apply these layers by spincoating.  相似文献   
997.
The polycondensation of resorcinol and formaldehyde in a water–ethanol mixture using the adapted Stöber method was used to obtain resol resins. An optimization of synthesis conditions and the use of an appropriate stabilizer (e.g., poly(vinyl alcohol)) resulted in spherical grains. The resins were carbonized in the temperature range of 600–1050 °C and then chemically activated in an aqueous HNO3 solution, gaseous ammonia, or by an oxidation–reduction cycle (soaking in a HNO3 solution followed by treatment with NH3). The obtained carbons were characterized by XRD, the low-temperature adsorption of nitrogen, SEM, TGA, and XPS in order to determine degree of graphitization, porosity, shape and size of particles, and surface composition, respectively. Finally, the materials were tested in phenol adsorption. The pseudo-second order model perfectly described the adsorption kinetics. A clear correlation between the micropore volume and the adsorption capacity was found. The content of graphite domains also had a positive effect on the adsorption properties. On the other hand, the presence of heteroatoms, especially oxygen groups, resulted in the clogging of the pores and a decrease in the amount of adsorbed phenol.  相似文献   
998.
High-pressure homogenization (HPH) is one of the food-processing methods being tested for use in food preservation as an alternative to pasteurization. The effects of the HPH process on food can vary depending on the process parameters used and product characteristics. The study aimed to investigate the effect of pressure, the number of passes, and the inlet temperature of HPH processing on the quality of cloudy blackcurrant juice as an example of food rich in bioactive compounds. For this purpose, the HPH treatment (pressure of 50, 150, and 220 MPa; one, three, and five passes; inlet temperature at 4 and 20 °C) and the pasteurization of the juice were performed. Titratable acidity, pH, turbidity, anthocyanin, vitamin C, and total phenolics content, as well as colour, and antioxidant activity were measured. Heat treatment significantly decreased the quality of the juice. For processing of the juice, the best were the combinations of the following: one pass, the inlet temperature of 4 °C, any of the used pressures (50, 150, and 220 MPa); and one pass, the inlet temperature of 20 °C, and the pressure of 150 MPa. Vitamin C and anthocyanin degradation have been reported during the HPH. The multiple passes of the juice through the machine were only beneficial in increasing the antioxidant capacity but negatively affected the colour stability.  相似文献   
999.
Ascorbic acid (AA) has antioxidant properties. However, in the presence of Fe2+/Fe3+ ions and H2O2, it may behave as a pro-oxidant by accelerating and enhancing the formation of hydroxyl radicals (OH). Therefore, in this study we evaluated the effect of AA at concentrations of 1 to 200 µmol/L on OH-induced light emission (at a pH of 7.4 and temperature of 37 °C) from 92.6 µmol/L Fe2+—185.2 µmol/L EGTA (ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid)—2.6 mmol/L H2O2, and 92.6 µmol/L Fe3+—185.2 µmol/L EGTA—2.6 mmol/L H2O2 systems. Dehydroascorbic acid (DHAA) at the same range of concentrations served as the reference compound. Light emission was measured with multitube luminometer (AutoLumat Plus LB 953) for 120 s after automatic injection of H2O2. AA at concentrations of 1 to 50 µmol/L and of 1 to 75 µmol/L completely inhibited light emission from Fe2+-EGTA-H2O2 and Fe3+-EGTA-H2O2, respectively. Concentrations of 100 and 200 µmol/L did not affect chemiluminescence of Fe3+-EGTA-H2O2 but tended to increase light emission from Fe2+-EGTA-H2O2. DHAA at concentrations of 1 to 100 µmol/L had no effect on chemiluminescence of both systems. These results indicate that AA at physiological concentrations exhibits strong antioxidant activity in the presence of chelated iron and H2O2.  相似文献   
1000.
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号