首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6022篇
  免费   264篇
  国内免费   32篇
化学   4177篇
晶体学   19篇
力学   209篇
数学   1032篇
物理学   881篇
  2022年   33篇
  2021年   60篇
  2020年   65篇
  2019年   80篇
  2018年   88篇
  2017年   79篇
  2016年   155篇
  2015年   141篇
  2014年   172篇
  2013年   257篇
  2012年   330篇
  2011年   371篇
  2010年   235篇
  2009年   232篇
  2008年   331篇
  2007年   327篇
  2006年   334篇
  2005年   308篇
  2004年   266篇
  2003年   241篇
  2002年   286篇
  2001年   106篇
  2000年   102篇
  1999年   56篇
  1998年   58篇
  1997年   65篇
  1996年   76篇
  1995年   55篇
  1994年   67篇
  1993年   55篇
  1992年   54篇
  1991年   58篇
  1990年   49篇
  1989年   45篇
  1988年   41篇
  1987年   45篇
  1986年   40篇
  1985年   85篇
  1984年   83篇
  1983年   51篇
  1982年   86篇
  1981年   56篇
  1980年   78篇
  1979年   57篇
  1978年   77篇
  1977年   57篇
  1976年   56篇
  1975年   42篇
  1974年   44篇
  1973年   33篇
排序方式: 共有6318条查询结果,搜索用时 15 毫秒
131.
Boehmite xerogels are prepared by hydrolysis of Al(OC4H9)3 followed by peptization with HNO3 (H+/Al = 0, 0.07, 0.2). XRD and TEM show that these gels are made of nanosized crystals (5-9 nm in width and 3 nm thick). According to the amount of acid, no significant differences are found in size and shape, but only in the spatial arrangement of the crystallites. Nitrogen adsorption-desorption isotherms of nonpeptized gels are of type IV, whereas isotherms of peptized gels are of type I. These isotherms are analyzed by the t-plot method. The majority of pore volume results from intercrystalline mesopores, but the peptized gels also contain intercrystalline micropores. The particle packing is very dense for the gel peptized with H+/Al = 0.2 (porosity = 0.26), but it is less dense in non-peptized gel (porosity = 0.44). Heating these gels under vacuum creates, from 250 degrees C onwards, an intracrystalline microporosity resulting from the conversion of boehmite into transition alumina. But heating also causes intercrystalline micropores collapsing. The specific surface area increases up to a limit temperature (300 degrees C for nonpeptized gels and 400 degrees C for peptized) beyond which sintering of the particles begins and the surface decreases. The PSD are calculated assuming a cylindrical pore geometry and using the corrected Kelvin equation proposed by Kruk et al. Peptized xerogels give a monomodal distribution with a maximum near 2 nm and no pores are larger than 6 nm. Nonpeptized gels have a bimodal distribution with a narrow peak near to 2 nm and a broad unsymmetrical peak with a maximum at 4 nm. Heating in air above 400 degrees C has a strong effect on the porosity. As the temperature increases, there is a broadening of the distribution and a marked decrease of small pores (below 3 nm). However, even after treatment at 800 degrees C, micropores are still present.  相似文献   
132.
We report potential of mean force (PMF) calculations on the interaction between the p-sulfonatocalix[4]arene and a monovalent cation (Cs(+)). It has been recently shown from microcalorimetry and (133)Cs NMR experiments that the association with Cs(+) is governed by favourable cation-pi interactions and is characterized by the insertion of the cation into the cavity of the macrocycle. We show that the PMF calculation based upon a classical model is not able to reproduce both the thermodynamic properties of association and the insertion of the cation. In order to take into account the different contributions of the cation-pi interactions, we develop a new methodology consisting of changing the standard PMF by an additional contribution resulting from quantum calculations. The calculated thermodynamic properties of association are thus in line with the microcalorimetry and (133)Cs NMR experiments and the structure of the complex at the Gibbs free-energy minimum shows the insertion of the cation into the cavity of the calixarene.  相似文献   
133.
2,2,6,6-Tetramethyl-1-piperidinyloxy catalyzes efficient oxidation of primary alcohols to aldehydes by N-chlorosuccinimide, in a biphasic dichloromethane-aqueous pH 8.6 buffer system in the presence of tetrabutylammonium chloride. Aliphatic, benzylic, and allylic alcohols are readily oxidized with no overoxidation to carboxylic acids. Secondary alcohols are oxidized to ketones with a much lower efficiency. Very high chemoselectivities are observed when primary alcohols are oxidized in the presence of secondary ones. Primary-secondary diols are selectively transformed into hydroxy aldehydes, with, in some cases, no detectable formation of the isomeric keto alcohols.  相似文献   
134.
The symmetric and unsymmetric phenylchlorohydrodigermanes can be isolated or characterized via partial halogenation of the Ge? H bonds of the symmetrical phenylhydrodigermanes Ph2(H)GeGe(H)2Ph, Ph(H)2GeGe(H)2Ph by chloromethyl methyl ether and carbontetrachloride. Some of these phenylchlorohydrodigermanes are formed by insertion of phenylchlorogermylene (PhGeCl) on the Ge? H or Ge? Cl bonds of the phenylchlorohydrogermanes. The hydrolysis of the monochloro phenylhydrodigermanes Ph2(Cl)GeGe(H)2 and Ph(Cl)(H)GeGe(H)2Ph leads to the phenyl phenylhydrogermyl digermoxanes [Ph2(H)GeGePh2]2O and [Ph(H)2GeGe(H)Ph]2O. Treatment of these oxides with the concentrated aqueous solutions of hydracides leads to the monofluorinated, brominated and iodinated phenylhydrodigermanes Ph2(H)GeGe(X)Ph2 and Ph(H)2GeGe(H)(X)Ph (X) = F, Br, I). Phenylchlorohydrodigermanes decompose thermally by α-elimination on one germanium atom with formation of germylene and phenylchlorohydrogermane. The physico-chemical IR. and NMR. study of these phenylhalogenohydrodigermanes indicates that, if the vGe? H frequency variations are mostly linked to the inductive effects of the substituents on the same germanium, the variations of the chemical shifts of the Ge? H protons seem to be due to many factors and especially to the inductive effect of the substituents on the germanium and the magnetic anisotropy of the Ge? X bonds.  相似文献   
135.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   
136.
137.
For any initial spin configuration we prove the existence, unicity and regularity properties of the solution of Hamilton's equations for the infinite classical Heisenberg model with stable interactions, along with the essential selfadjointness of the associated Liouville operator. We also prove new properties of SU (2)-coherent states which, together with the concept of Trotter approximations for one-parameter (semi-) groups, are used to show that this dynamics is nothing but the classical limit of the time evolution generated by the infinite quantum (suitably normalized) Heisenberg Hamiltonian. The classical limit emerges when the spin magnitude S goes to infinity while Plank's constant goes to zero, their product S remaining fixed. The main results are stated in the form of intertwining relations between the classical and the quantum unitary group.Work supported in part by the Swiss National Science Foundation under Grant 820-436-76 and in part by the U.S. Department of Energy under contract EG-77-C-03-1538.  相似文献   
138.
Full details on a very efficient transamination reaction for the synthesis of zwitterionic N,N-dialkyl-2-amino-5-alcoholate-1,4-benzoquinonemonoiminium derivatives [C6H2(=NHR)2(=O)2] 5-16 are reported. The molecular structures of zwitterions 5 (R=CH3) in 5.H2O, 13 (R=CH2CH2OMe), 15 (R=CH2CH2NMe2), and of the parent, unsubstituted system [C6H2(=NH2)2(=O)2] 4 in 4.H2O have been established by single-crystal X-ray diffraction. This one-pot preparation can be carried out in water, MeOH, or EtOH and allows access to new zwitterions with N-substituents bearing functionalities such as -OMe (13), -OH (9-12), NR1R2 with R1 = or not equal R2 (14-16) or an alkene (8), leading to a rich coordination chemistry and allowing fine-tuning of the supramolecular arrangements in the solid state. As previously described for 15, which reacted with Zn(acac)2 to afford the octahedral Zn(II) complex [Zn[C6H2(NCH2CH2NMe2)O(O)(NHCH2CH2NMe2)]2] (20), ligands 13 and 16 with coordinating "arms" afforded with Zn(acac)2 the 2:1 adducts [Zn[C6H2(NCH2CH2X)O(=O)(NHCH2CH2NX)]2] 19 (X=OMe) and 21 (X=NHEt), with N2O4 and N4O2 donor sets around the octahedral Zn(II) center, respectively. Furthermore, zwitterions 15 and 16 reacted with ZnCl2 to give the stable, crystallographically characterized Zn(II) zwitterionic complexes [ZnCl2[C6H2(NCH2CH2NR1R2)O(=O)(NHCH2CH2NHR1R2)]] 22 (R1=R2=Me) and 23 (R1=Et, R2=H) by means of an unprecedented, tandemlike synthesis in which 1) the two pendant amino groups of the organic benzoquinonemonoimine zwitterionic precursor favor metal coordination and proton transfer and 2) the saturated linker prevents pi-conjugation between the charges. The nature of the structural arrangements in the solid state for both inorganic (20, 22, 23) and organic (5, 9, 13, and 15) molecules is determined by subtle variations in the nature of the N-substituent on the zwitterion precursor.  相似文献   
139.
A non-aqueous capillary electrophoresis (NACE) method coupled to indirect absorbance detection has been developed for the separation of the three positional isomers of monosulfated fucose. The optimized electrolyte was composed of 12 mM ethanolamine, 2 mM trimesic acid buffer in a methanol-ethanol (1:1, v/v) mixture. As the retained electrolyte entails no separating agent other than the pH buffer, the NACE separation of the positional isomers has been ascribed mainly to selective ion-pairing with the electrolyte counter-ion and the possibility of a selective solvation effect in the alcohol mixture. In the absence of pure isomeric standards, peak identification was completed by MS and NMR spectroscopy and selective enzymatic desulfation. This method should be of interest for the structure elucidation of monosulfated fucose-based polysaccharides and for the screening of sulfoesterase of unknown activity.  相似文献   
140.
In the title compound, (1,4,7,10,13,16‐hexa­oxacyclo­octa­decane‐1κ6O)‐μ‐oxo‐1:2κ2O:O‐hexa­kis(tetra­hydro­borato)‐1κ3H;2κ2H;2κ2H;2κ3H;2κ3H;2κ3H‐diuranium(IV), [U2(BH4)6O(C12H24O6)], one of the U atoms (U1), located at the centre of the crown ether moiety, is bound to the six ether O atoms, and also to a tridentate tetra­hydro­borate group and a μ‐oxo atom in axial positions. The other U atom (U2) is bound to the same oxo group and to five tetra­hydro­borate moieties, three of them tridentate and the other two bidentate. The two metal centres are bridged by the μ‐oxo atom in an asymmetric fashion, thus giving the species (18‐crown‐6)(κ3‐BH4)U=(μ‐O)—U(κ3‐BH4)32‐BH4)2, in which the U1=O and U2—O bond lengths to the μ‐O atom [1.979 (5) and 2.187 (5) Å, respectively] are indicative of the presence of positive and negative partial charges on U1 and U2, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号