首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1693篇
  免费   146篇
  国内免费   4篇
化学   1178篇
晶体学   2篇
力学   53篇
数学   327篇
物理学   283篇
  2023年   34篇
  2022年   24篇
  2021年   52篇
  2020年   110篇
  2019年   78篇
  2018年   47篇
  2017年   42篇
  2016年   121篇
  2015年   94篇
  2014年   92篇
  2013年   92篇
  2012年   127篇
  2011年   132篇
  2010年   78篇
  2009年   60篇
  2008年   81篇
  2007年   71篇
  2006年   53篇
  2005年   51篇
  2004年   26篇
  2003年   33篇
  2002年   36篇
  2001年   11篇
  2000年   15篇
  1999年   9篇
  1998年   13篇
  1997年   6篇
  1996年   7篇
  1995年   9篇
  1994年   8篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1986年   8篇
  1978年   5篇
  1977年   10篇
  1976年   6篇
  1974年   5篇
  1972年   5篇
  1971年   5篇
  1970年   6篇
  1968年   7篇
  1967年   7篇
  1966年   5篇
  1964年   5篇
  1963年   6篇
  1930年   5篇
  1912年   5篇
  1911年   5篇
  1909年   5篇
排序方式: 共有1843条查询结果,搜索用时 46 毫秒
51.
Amorphous, porous materials represent by far the largest proportion of natural and men-made materials. Their pore networks consists of a wide range of pore sizes, including meso- and macropores. Within such a pore network, material moisture plays a crucial role in almost all transport processes. In the hygroscopic range, the pores are partially saturated and liquid water is only located at the pore fringe due to physisorption. Therefore, material parameters such as porosity or median pore diameter are inadequate to predict material moisture and moisture transport. To quantify the spatial distribution of material moisture, Hillerborg’s adsorption theory is used to predict the water layer thickness for different pore geometries. This is done for all pore sizes, including those in the lower nanometre range. Based on this approach, it is shown that the material moisture is almost completely located in mesopores, although the pore network is highly dominated by macropores. Thus, mesopores are mainly responsible for the moisture storage capacity, while macropores determine the moisture transport capacity, of an amorphous material. Finally, an electrical analogical circuit is used as a model to predict the diffusion coefficient based on the pore-size distribution, including physisorption.  相似文献   
52.
53.
54.
55.
We propose a model for the electrostatics of globular proteins in which the low dielectric region is replaced by concentric spheres of the appropriate size. The method uses analytical formulas for the dielectric sphere and allows an efficient and accurate treatment of bulk charges. For surface charges, we propose a numerical determination of the sphere radius based on the solvent exposure of the individual atoms. The present implementation of the sphere model yields a good approximation of finite-difference Poisson solvation and interaction energies for a test set of 12 proteins.  相似文献   
56.
57.
Despite the strong technological importance of lanthanide complexes, their formation processes are rarely investigated. This work is dedicated to determining the influence of synthesis parameters on the formation of [Ce(bipy)2(NO3)3] as well as Ce3+‐ and Tb3+‐substituted [La(bipy)2(NO3)3] (bipy = 2,2′‐bipyridine) complexes. To this end, we performed in situ luminescence measurements, synchrotron‐based X‐ray diffraction (XRD) analysis, infrared spectroscopy (IR), and measured pH value and/or ion conductivity during their synthesis process under real reaction conditions. For the [Ce(bipy)2(NO3)3] complex, the in situ luminescence measurements initially presented a broad emission band at 490 nm, assigned to the 5d→4f Ce3+ ions within the ethanolic solvation shell. Upon the addition of bipy, a red shift to 700 nm was observed. This shift was attributed to the changes in the environment of the Ce3+ ions, indicating their desolvation and incorporation into the [Ce(bipy)2(NO3)3] complex. The induction time was reduced from 8 to 3.5 min, by increasing the reactant concentration by threefold. In contrast, [La(bipy)2(NO3)3] crystallized within days instead of minutes, unless influenced by high Ce3+ and Tb3+ concentrations. Monitoring and controlling the influence of the reaction parameters on the structure of emissive complexes is important for the development of rational synthesis approaches and optimization of their structure‐related properties like luminescence.  相似文献   
58.
59.
Glycidyl tosylate appears to be a non‐polymerizable epoxide when nucleophilic initiators are used because of the excellent leaving group properties of the tosylate. However, using the monomer‐activated mechanism, this unusual monomer can be copolymerized with ethylene oxide (EO) and propylene oxide (PO), respectively, yielding copolymers with 7–25 % incorporated tosylate‐moieties. The microstructure of the copolymers was investigated via in situ 1H NMR spectroscopy, and the reactivity ratios of the copolymerizations have been determined. Quantitative nucleophilic substitution of the tosylate‐moiety is demonstrated for several examples. This new structure provides access to a library of functionalized polyethers that cannot be synthesized by conventional oxyanionic polymerization.  相似文献   
60.
Manganese oxide (MnOx) electrocatalysts are examined herein by in situ soft X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L‐edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn?O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K‐edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号