首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1666篇
  免费   164篇
  国内免费   5篇
化学   1190篇
晶体学   2篇
力学   53篇
数学   312篇
物理学   278篇
  2023年   34篇
  2022年   24篇
  2021年   54篇
  2020年   110篇
  2019年   79篇
  2018年   47篇
  2017年   42篇
  2016年   121篇
  2015年   94篇
  2014年   92篇
  2013年   91篇
  2012年   130篇
  2011年   149篇
  2010年   80篇
  2009年   59篇
  2008年   82篇
  2007年   70篇
  2006年   49篇
  2005年   46篇
  2004年   24篇
  2003年   33篇
  2002年   35篇
  2001年   8篇
  2000年   14篇
  1999年   11篇
  1998年   14篇
  1996年   8篇
  1995年   10篇
  1994年   8篇
  1992年   5篇
  1991年   9篇
  1989年   6篇
  1986年   7篇
  1984年   5篇
  1983年   5篇
  1978年   6篇
  1977年   10篇
  1976年   7篇
  1974年   6篇
  1968年   4篇
  1967年   7篇
  1964年   4篇
  1963年   6篇
  1933年   4篇
  1930年   5篇
  1916年   4篇
  1914年   4篇
  1912年   5篇
  1911年   5篇
  1909年   5篇
排序方式: 共有1835条查询结果,搜索用时 0 毫秒
91.
92.
93.
94.
95.
We used optical methods such as Laser Induced Fluorescence (LIF) and confocal Laser Scanning Microscopy (LSM) to characterize gas–liquid phase distribution in rectangular microchannels. Using a 2 m long microchannel with a hydraulic diameter of 200 μm enables the precise measurement of important parameters such as liquid slug length, bubble length, pressure drop and film thickness at the wall as well as in the corner of the microchannel for low Capillary numbers (Ca) ranging from 2 × 10−4 to 1 × 10−2. This range of Ca was obtained by using different fluid pairs such as ethanol, water and different concentrated aqueous solutions of glycerol in combination with nitrogen.  相似文献   
96.
97.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization was used to produce poly(methyl acrylate) (pMA) loops grafted onto silica nanoparticles using doubly anchored bifunctional RAFT agents 1,4‐bis(3′‐trimethoxysilylpropyltrithiocarbonylmethyl)benzene (Z‐group approach) and 1,6‐bis(o,p‐2′‐trimethoxysilylethylbenzyltrithiocarbonyl)hexane (R‐group approach) as mediators. In both cases, molecular weights of the resulting surface‐confined polymer loops increased with monomer conversion, whereas the grafting density was significantly higher in the case of the R‐group supported RAFT polymerization due to mechanistic differences of the RAFT process at the surface. This result was evident from thermogravimetric analysis and supported by scanning electron microscopy. Polymer loops with molecular weights up to 53,000 g mol?1 were accessible with polydispersities of about 2.0 without and 1.5 with the addition of free RAFT agent. UV signals of the detached pMA loops measured via size exclusion chromatography were shifted to higher molecular weights compared with the corresponding RI signals, indicating branching reactions caused by the close proximity of growing radicals and polymer at the surface of the silica nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7656–7666, 2008  相似文献   
98.
Even though the field of self‐healing is rarely known so far – self healing materials are already present at our market. Nevertheless just due to modern scientific concepts we are now able to understand the basic mechanistic steps in a more detailed way. Further progress on this field will open access to materials with a wide range of adjustable properties. Therefore, applications of such self healing materials are not limited – assuming the market‐price is competitive and the elongated lifetime delivers an appropriate advantage. Already demonstrated for concrete and clear coatings for cars, the investigations done so far have generated materials with improved properties and prolonged durability.  相似文献   
99.
100.
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号