首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   989篇
  免费   29篇
  国内免费   7篇
化学   489篇
晶体学   17篇
力学   30篇
数学   139篇
物理学   350篇
  2020年   8篇
  2019年   15篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   16篇
  2014年   24篇
  2013年   60篇
  2012年   32篇
  2011年   47篇
  2010年   15篇
  2009年   22篇
  2008年   39篇
  2007年   41篇
  2006年   43篇
  2005年   48篇
  2004年   29篇
  2003年   30篇
  2002年   29篇
  2001年   25篇
  2000年   18篇
  1999年   10篇
  1998年   10篇
  1997年   12篇
  1996年   21篇
  1995年   13篇
  1994年   11篇
  1993年   17篇
  1992年   13篇
  1991年   14篇
  1990年   15篇
  1989年   24篇
  1988年   15篇
  1987年   19篇
  1985年   28篇
  1984年   18篇
  1983年   8篇
  1982年   14篇
  1981年   13篇
  1980年   19篇
  1979年   7篇
  1978年   18篇
  1977年   15篇
  1976年   14篇
  1975年   12篇
  1974年   10篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
  1969年   8篇
排序方式: 共有1025条查询结果,搜索用时 531 毫秒
991.
We present a systematic study of metal–organic frameworks (MOFs) for the storage of oxygen. The study starts with grand canonical Monte Carlo simulations on a suite of 10 000 MOFs for the adsorption of oxygen. From these data, the MOFs were down selected to the prime candidates of HKUST‐1 (Cu‐BTC) and NU‐125, both with coordinatively unsaturated Cu sites. Oxygen isotherms up to 30 bar were measured at multiple temperatures to determine the isosteric heat of adsorption for oxygen on each MOF by fitting to a Toth isotherm model. High pressure (up to 140 bar) oxygen isotherms were measured for HKUST‐1 and NU‐125 to determine the working capacity of each MOF. Compared to the zeolite NaX and Norit activated carbon, NU‐125 has an increased excess capacity for oxygen of 237 % and 98 %, respectively. These materials could ultimately prove useful for oxygen storage in medical, military, and aerospace applications.  相似文献   
992.
We demonstrate a versatile methodology combining both covalent surface anchoring and polymer cross-linking that is capable of forming long-lasting coatings on reactive and nonreactive surfaces. Polymers containing reactive methoxysilane groups form strong Si-O-Si links to oxide surfaces, thereby anchoring the polymer chains at multiple points. The interchain cross-linking of the methoxysilane groups provides additional durability to the coating and makes the coatings highly resistant to solvents. By tailoring the chemical structure of the polymer, we were able to control the surface energy (wetting) of a variety of surfaces over a wide range of water contact angles of 30-140 degrees . In addition, we synthesized covalently linked layer-by-layer polymeric assemblies from these novel methoxysilane polymers. Finally, antibacterial agents, such as silver bromide nanoparticles and triiodide ions, were introduced into these functional polymers to generate long-lasting and renewable antiseptic coatings on glass, metals, and textiles.  相似文献   
993.
The objective of this study was to detect auditory cortical activation in non-sedated neonates employing functional magnetic resonance imaging (fMRI). Using echo-planar functional brain imaging, subjects were presented with a frequency-modulated pure tone; the BOLD signal response was mapped in 5 mm-thick slices running parallel to the superior temporal gyrus. Twenty healthy neonates (13 term, 7 preterm) at term and 4 adult control subjects. Blood oxygen level-dependent (BOLD) signal in response to auditory stimulus was detected in all 4 adults and in 14 of the 20 neonates. FMRI studies of adult subjects demonstrated increased signal in the superior temporal regions during auditory stimulation. In contrast, signal decreases were detected during auditory stimulation in 9 of 14 newborns with BOLD response. fMRI can be used to detect brain activation with auditory stimulation in human infants.  相似文献   
994.
Neutron powder diffraction (NPD) offers many advantages in the analysis of battery materials. Understanding the relationship between the structural transformations of electrode materials and their electrochemical performance within lithium-ion batteries is crucial for further development of these technologies and is the overall goal of in situ NPD experiments. In this work, we present NPD data of electrode materials within batteries that are collected in situ during electrochemical cycling, including the commercially available materials LiCoO2, LiMn2O4, LiFePO4 and graphite and the YFe(CN)6 and FeFe(CN)6 materials that are not commercially available. Using these data, we illustrate the experimental approach and requirements for the collection of in situ NPD data of sufficient quality for detailed structural analyses of the electrode components of interest within batteries.  相似文献   
995.
The hydrogen storage properties of Fe(2)(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and an oxidized analog, Fe(2)(O(2))(dobdc), have been examined using several complementary techniques, including low-pressure gas adsorption, neutron powder diffraction, and inelastic neutron scattering. These two metal-organic frameworks, which possess one-dimensional hexagonal channels decorated with unsaturated iron coordination sites, exhibit high initial isosteric heats of adsorption of -9.7(1) and -10.0(1) kJ mol(-1), respectively. Neutron powder diffraction has allowed the identification of three D(2) binding sites within the two frameworks, with the closest contacts corresponding to Fe-D(2) separations of 2.47(3) and 2.53(5) ?, respectively. Inelastic neutron scattering spectra, obtained from p-H(2) (para-H(2)) and D(2)-p-H(2) mixtures adsorbed in Fe(2)(dobdc), reveal weak interactions between two neighboring adsorption sites, a finding that is in opposition to a previous report of possible 'pairing' between neighboring H(2) molecules.  相似文献   
996.
Lithium-ion batteries power many portable devices and in the future are likely to play a significant role in sustainable-energy systems for transportation and the electrical grid. LiFePO(4) is a candidate cathode material for second-generation lithium-ion batteries, bringing a high rate capability to this technology. LiFePO(4) functions as a cathode where delithiation occurs via either a solid-solution or a two-phase mechanism, the pathway taken being influenced by sample preparation and electrochemical conditions. The details of the delithiation pathway and the relationship between the two-phase and solid-solution reactions remain controversial. Here we report, using real-time in situ neutron powder diffraction, the simultaneous occurrence of solid-solution and two-phase reactions after deep discharge in nonequilibrium conditions. This work is an example of the experimental investigation of nonequilibrium states in a commercially available LiFePO(4) cathode and reveals the concurrent occurrence of and transition between the solid-solution and two-phase reactions.  相似文献   
997.
998.
Fluorination of fluorophores can substantially enhance their photostability and improve spectroscopic properties. To facilitate access to fluorinated fluorophores, bis(2,4,5-trifluorophenyl)methanone was synthesized by treatment of 2,4,5-trifluorobenzaldehyde with a Grignard reagent derived from 1-bromo-2,4,5-trifluorobenzene, followed by oxidation of the resulting benzyl alcohol. This hexafluorobenzophenone was subjected to sequential nucleophilic aromatic substitution reactions, first at one or both of the more reactive 4,4'-fluorines, and second by cyclization through substitution of the less reactive 2,2'-fluorines, using a variety of oxygen, nitrogen, and sulfur nucleophiles, including hydroxide, methoxide, amines, and sulfide. This method yields symmetrical and asymmetrical fluorinated benzophenones, xanthones, acridones, and thioxanthones and provides scalable access to known and novel precursors to fluorinated analogues of fluorescein, rhodamine, and other derivatives. Spectroscopic studies revealed that several of these precursors are highly fluorescent, with tunable absorption and emission spectra, depending on the substituents. This approach should allow access to a wide variety of novel fluorinated fluorophores and related compounds.  相似文献   
999.
Ionic polymers as a new structural motif for high-energy-density materials   总被引:10,自引:0,他引:10  
Energetic materials have been used for nearly two centuries in military affairs and to cut labor costs and expedite laborious processes in mining, tunneling, construction, demolition, and agriculture, making a tremendous contribution to the world economy. Yet there has been little advancement in the development of altogether new energetic motifs despite long-standing research efforts to develop superior materials. We report the discovery of new energetic compounds of exceptionally high energy content and novel polymeric structure which avoid the use of lead and mercury salts common in conventional primary explosives. Laboratory tests indicate the remarkable performance of these Ni- and Co-based energetic materials, while DFT calculations indicate that these are possibly the most powerful metal-based energetic materials known to date, with heats of detonation comparable with those of the most powerful organic-based high explosives currently in use.  相似文献   
1000.
Metal organic frameworks (MOFs) are a leading class of porous materials for a wide variety of applications, but many of them have been shown to be unstable toward water. Cu-BTC (1,3,5 benzenetricarboxylic acid, BTC) was treated with a plasma-enhanced chemical vapor deposition (PECVD) of perfluorohexane creating a hydrophobic form of Cu-BTC. It was found that the treated Cu-BTC could withstand high humidity and even submersion in water much better than unperturbed Cu-BTC. Through Monte Carlo simulations it was found that perfluorohexane sites itself in such a way within Cu-BTC as to prevent the formation of water clusters, hence preventing the decomposition of Cu-BTC by water. This PECVD of perfluorohexane could be exploited to widen the scope of practical applications of Cu-BTC and other MOFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号