首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   18篇
  国内免费   3篇
化学   424篇
晶体学   4篇
力学   22篇
数学   79篇
物理学   196篇
  2023年   5篇
  2022年   6篇
  2021年   8篇
  2020年   14篇
  2019年   11篇
  2018年   9篇
  2017年   8篇
  2016年   11篇
  2015年   11篇
  2014年   14篇
  2013年   41篇
  2012年   38篇
  2011年   42篇
  2010年   17篇
  2009年   17篇
  2008年   22篇
  2007年   34篇
  2006年   39篇
  2005年   33篇
  2004年   28篇
  2003年   19篇
  2002年   22篇
  2001年   12篇
  2000年   15篇
  1999年   13篇
  1998年   7篇
  1997年   13篇
  1996年   19篇
  1995年   9篇
  1994年   11篇
  1993年   10篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   5篇
  1981年   13篇
  1980年   5篇
  1979年   10篇
  1978年   7篇
  1977年   11篇
  1976年   4篇
  1974年   9篇
  1973年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有725条查询结果,搜索用时 0 毫秒
611.
High selectivity and sensitivity is reported in the measurements of xanthine in urine by fast scan cyclic voltammetry (FSV) with a nanostructured carbon fiber sensor of 3.5 +/- 0.4 mum radius. Fabrication of the sensors for the measurements is described. Fabrication of the nanostructure at the carbon fiber sensor surface exposes surface pores. SEM images confirm the formation of the nanostructure. The results indicate that the nanostructure improves the sensitivity and limit of detection (LOD) in the measurements of xanthine and uric acid. The sensors allow rapid direct measurements of xanthine in 2000-fold diluted xanthinuric urine and of uric acid in 2000-fold diluted normal urine. The sensitivity and the LOD of xanthine is 0.40 +/- 0.02 nA microM(-1) (0.995) and 1 microM, respectively, and 0.99 +/- 0.01 nA microM(-1) (0.998) and 500 nM for uric acid. The concentration of xanthine in 2000-fold diluted xanthinuric urine is 1.6 +/- 0.2 muM from FSV and from HPLC. The concentration of xanthine and uric acid in urine can be determined by pre- or post-calibration of the sensor in buffer or by the method of standard addition.  相似文献   
612.
A new molecular balance was developed to measure face-to-face arene-arene interactions. The balance adopts distinct folded and unfolded conformations due to restricted rotation about a C aryl-N imide bond. In the folded conformer, the rigid bicyclic framework enforces an offset face-to-face geometry to the exclusion of edge-to-face geometries, which was verified by X-ray crystallography. Measurement of the folded to unfolded ratio yields accurate values for the arene-arene interaction in a range of different solvents.  相似文献   
613.
Absorption and fluorescence spectroscopy studies reveal the formation of a weak complex between pyrene and C(6)F(6) even in very dilute systems. The complex affects the photophysics of pyrene and reveals a combination of static and dynamic-quenching phenomena in both polar and nonpolar solvents. The results are supported by computational studies that shed light on the structure of the complex and the interactions involved and suggest that ground and excited-state interactions are of comparable magnitude; the association is believed to be driven by quadrupolar interactions. Understanding these interactions in solution is important for applications that aim at controlling the regio- or stereoselectivity of organic reactions.  相似文献   
614.
Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation. We also describe plasma-bonding of TPE to glass to create hybrid TPE-glass devices. We further present a simple master-pretreatment method to replace our original technique that required the use of specialized equipment.  相似文献   
615.
A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.  相似文献   
616.
In this paper we report the preparation and characterization of [Gd(dtpa)](2-) intercalated layered double hydroxide (LDH) nanomaterials. [Gd(dtpa)](2-) (gadolinium(III) diethylene triamine pentaacetate) was transferred into LDH by anionic exchange. The intercalation of [Gd(dtpa)](2-) into LDH was confirmed by X-ray diffraction for the new phase with the interlayer spacing of 3.5-4.0 nm and by FTIR for the characteristic vibration peaks of [Gd(dtpa)](2-). The morphology of the nanoparticles was influenced by the extent of [Gd(dtpa)](2-) loading, in which the poly-dispersity quality decreased as the [Gd(dtpa)](2-) loading was increased. Compared with the morphology of the original Mg(2)Al-Cl-LDH nanoparticles (hexagonal plate-like sheets of 50-200 nm), the modified LDH-Gd(dtpa) nanoparticles are bar-like with a width of 30-60 nm and a length of 50-150 nm. LDH-Gd(dtpa) was expected to have an increased water proton magnetic resonance relaxivity due to the intercalation of [Gd(dtpa)](2-) into the LDH interlayer that led to slower molecular anisotropic tumbling compared with free [Gd(dtpa)](2-) in solution. Indeed, LDH-nanoparticle suspension containing approximately 1.6 mM [Gd(dtpa)](2-) exhibits a longitudinal proton relaxivity r(1) of approximately 16 mM(-1) s(-1) and a transverse proton relaxivity r(2) of approximately 50 mM(-1) s(-1) at room temperature and a magnetic field of 190 MHz, which represents an enhancement four times (r(1)) and 12 times (r(2)) that of free [Gd(dtpa)](2-) in solution under the same reaction conditions. We have thus tailored LDH-nanoparticles into a novel contrast agent with strong relaxivity, promising for great potential applications in magnetic resonance imaging.  相似文献   
617.
Herein, we report that a new flexible coordination network, NiL2 (L=4‐(4‐pyridyl)‐biphenyl‐4‐carboxylic acid), with diamondoid topology switches between non‐porous (closed) and several porous (open) phases at specific CO2 and CH4 pressures. These phases are manifested by multi‐step low‐pressure isotherms for CO2 or a single‐step high‐pressure isotherm for CH4. The potential methane working capacity of NiL2 approaches that of compressed natural gas but at much lower pressures. The guest‐induced phase transitions of NiL2 were studied by single‐crystal XRD, in situ variable pressure powder XRD, synchrotron powder XRD, pressure‐gradient differential scanning calorimetry (P‐DSC), and molecular modeling. The detailed structural information provides insight into the extreme flexibility of NiL2 . Specifically, the extended linker ligand, L , undergoes ligand contortion and interactions between interpenetrated networks or sorbate–sorbent interactions enable the observed switching.  相似文献   
618.
Wetting and wetting transitions on copper-based super-hydrophobic surfaces   总被引:8,自引:0,他引:8  
Rough and patterned copper surfaces were produced using etching and, separately, using electrodeposition. In both of these approaches the roughness can be varied in a controlled manner and, when hydrophobized, these surfaces show contact angles that increase with increasing roughness to above 160 degrees . We show transitions from a Wenzel mode, whereby the liquid follows the contours of the copper surface, to a Cassie-Baxter mode, whereby the liquid bridges between features on the surface. Measured contact angles on etched samples could be modeled quantitatively to within a few degrees by the Wenzel and Cassie-Baxter equations. The contact angle hysteresis on these surfaces initially increased and then decreased as the contact angle increased. The maximum occurred at a surface area where the equilibrium contact angle would suggest that a substantial proportion of the surface area was bridged.  相似文献   
619.
The D/H isotope effect for the CH-π interaction was studied experimentally and computationally. First, a series of molecular balances that are very sensitive to changes in the strength of the CH-π interactions in solution were designed. Balances with deuterated and non-deuterated alkyl groups were synthesized, and their intramolecular CH-π interactions were compared. The geometries of their intramolecular CH-π and CD-π interactions were characterized in the solid state by X-ray analysis, and the strength of each interaction was characterized in solution by the folded/unfolded ratio as measured by (1)H NMR spectra. Second, the relative strengths of the CH-π and CD-π interactions were also assessed computationally using dispersion-corrected DFT (PDE-D2/6-31+G*). No significant differencee was observed in either the experimental or theoretical studies, indicating that the D/H isotope effect for the CH-π interaction is either very small or nonexistent.  相似文献   
620.
Protein adhesion plays a major role in determining the biocompatibility of materials. The first stage of implant integration is the adhesion of protein followed by cell attachment. Surface modification of implants (surface chemistry and topography) to induce and control protein and cell adhesion is currently of great interest. This communication presents data on protein adsorption (bovine serum albumin and fibrinogen) onto model hydrophobic (CH(3)) and hydrophilic (OH) surfaces, investigated using a quartz crystal microbalance (QCM) and grazing angle infrared spectroscopy. Our data suggest that albumin undergoes adsorption via a single step whereas fibrinogen adsorption is a more complex, multistage process. Albumin has a stronger affinity toward the CH(3) compared to OH terminated surface. In contrast, fibrinogen adheres more rapidly to both surfaces, having a slightly higher affinity toward the hydrophobic surface. Conformational assessment of the adsorbed proteins by grazing angle infrared spectroscopy (GA-FTIR) shows that after an initial 1 h incubation few further time-dependent changes are observed. Both proteins exhibited a less organized secondary structure upon adsorption onto a hydrophobic surface than onto a hydrophilic surface, with the effect observed greatest for albumin. This study demonstrates the ability of simple tailor-made monochemical surfaces to influence binding rates and conformation of bound proteins through protein-surface interactions. Current interest in biocompatible materials has focused on surface modifications to induce rapid healing, both of implants and for wound care products. This effect may also be of significance at the next stage of implant integration, as cell adhesion occurs through the surface protein layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号