首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31910篇
  免费   1057篇
  国内免费   26篇
化学   21779篇
晶体学   254篇
力学   570篇
数学   4452篇
物理学   5938篇
  2023年   258篇
  2022年   220篇
  2021年   385篇
  2020年   537篇
  2019年   500篇
  2018年   675篇
  2017年   623篇
  2016年   1219篇
  2015年   977篇
  2014年   998篇
  2013年   2058篇
  2012年   2253篇
  2011年   2444篇
  2010年   1406篇
  2009年   1182篇
  2008年   2041篇
  2007年   2025篇
  2006年   1768篇
  2005年   1596篇
  2004年   1272篇
  2003年   984篇
  2002年   891篇
  2001年   692篇
  2000年   588篇
  1999年   451篇
  1998年   314篇
  1997年   227篇
  1996年   356篇
  1995年   248篇
  1994年   228篇
  1993年   276篇
  1992年   245篇
  1991年   161篇
  1990年   155篇
  1989年   125篇
  1988年   128篇
  1987年   127篇
  1986年   122篇
  1985年   186篇
  1984年   165篇
  1983年   125篇
  1982年   116篇
  1981年   110篇
  1980年   80篇
  1979年   93篇
  1978年   90篇
  1977年   80篇
  1976年   81篇
  1975年   76篇
  1973年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The ability to locate minima on electronic excited states (ESs) potential energy surfaces both in the case of bright and dark states is crucial for a full understanding of photochemical reactions. This task has become a standard practice for small- to medium-sized organic chromophores thanks to the constant developments in the field of computational photochemistry. However, this remains a very challenging effort when it comes to the optimization of ESs of transition metal complexes (TMCs), not only due to the presence of several electronic ESs close in energy, but also due to the complex nature of the ESs involved. In this article, we present a simple yet powerful method to follow an ES of interest during a structural optimization in the case of TMCs, based on the use of a compact hole-particle representation of the electronic transition, namely the natural transition orbitals (NTOs). State tracking using NTOs is unambiguously accomplished by computing the mono-electronic wave function overlap between consecutive steps of the optimization. Here, we demonstrate that this simple but robust procedure works not only in the case of the cytosine but also in the case of the ES optimization of a ruthenium nitrosyl complex which is very problematic with standard approaches. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.  相似文献   
993.
994.
Carbon nanotubes (CNTs) chemically functionalized were used to synthesize a series of novel nanocomposite hydrogels by in situ polymerization with acrylic acid (AA) and acrylamide (AM). A novel strategy was developed to prepare these hydrogels. CNTs were functionalized following a three-step chemical procedure: (i) purified carbon nanotubes (CNTsp) were partially surface oxidized to obtain CNTs with hydroxyl, carbonyl and carboxyl groups on their sidewalls (CNTsoxi), (ii) CNTsoxi were reacted with oxalyl chloride to obtain CNTs functionalized with acyl chloride groups (CNTsOCl), and (iii) CNTsOCl were reacted with acrylic acid (AA). The product, AA modified CNTsOCl (CNTsOCl-AA) was used to prepare the (CNTsOCl-AA-AM) nanocomposite hydrogels, where anhydride groups were tethered to the surface of the CNTsOCl-AA. The swelling process in water was evaluated as a consequence of the anhydride group hydrolysis, which broke some chemical links between CNTsOCl-AA and crosslinked AA-AM network. Equilibrium-swelling values of all hydrogels increased as the content of AA increased and were larger for AA-AM hydrogels than for CNTsOCl-AA-AM nanocomposite hydrogels. Young’s moduli of CNTsOCl-AA-AM nanocomposite hydrogels prepared with 1 or 2?wt.% AA, reached larger values than those measured for AA-AM hydrogels. This tendency was reversed when the AA content was raised to 3?wt.%.  相似文献   
995.
Magnesium‐based implants present several advantages for clinical applications, in particular due to their biocompatibility and degradability. However, degradation products can affect negatively the cell activity. In this work, a combined coating strategy to control the implant degradation and cell regulation processes is evaluated, including plasma electrolytic oxidation (PEO) that produces a 13 µm‐thick Ca, P, and Si containing ceramic coating with surface porosity, and breath figures (BF) approach that produces a porous polymeric poly(ε‐caprolactone) surface. The degradation of PCL‐PEO‐coated Mg hierarchical scaffold can be tailored to promote cell adhesion and proliferation into the porous structure. As a result, cell culture can colonize the inner PEO‐ceramic coating structure where higher amount of bioelements are present. The Mg/PEO/PCL/BF scaffolds exhibit equally good or better premyoblast cell adhesion and proliferation compared with Ti CP control. The biological behavior of this new hierarchical functionalized scaffold can improve the implantation success in bone and cardiovascular clinical applications.  相似文献   
996.
Metal–organic frameworks (MOFs) enable the design of host–guest systems with specific properties. In this work, we show how the confinement of anthracene in a well‐chosen MOF host leads to reversible yellow‐to‐purple photoswitching of the fluorescence emission. This behavior has not been observed before for anthracene, either in pure form or adsorbed in other porous hosts. The photoresponse of the host–guest system is caused by the photodimerization of anthracene, which is greatly facilitated by the pore geometry, connectivity, and volume as well as the structural flexibility of the MOF host. The photoswitching behavior was used to fabricate photopatternable and erasable surfaces that, in combination with data encryption and decryption, hold promise in product authentication and secure communication applications.  相似文献   
997.
Potassium tantalate (KT) thin films and powders of both K2Ta2O6 (KT pyrochlore) and KTaO3 (KT perovskite) structures were prepared by means of chemical solution deposition method using Si(111) with ZnO and MgO buffer layers as a substrate. The influence of reaction atmosphere on reaction pathway and phase composition for both KT powders, and KT thin films has been studied mainly by means of powder diffraction and infrared spectroscopy. When an oxygen flow instead of static air atmosphere has been used the process of pyrolysis in oxygen runs over much narrower temperature interval (200–300 °C), relatively to air atmosphere (200–600 °C) and almost no (in case of powders), or no (in case of thin films) pyrochlore intermediate phase has been detected in comparison with treatment in air, where the pyrochlore phase is stable at temperatures 500–600 °C (powders). KT perovskite phase starts to crystallize at temperatures 50° and 150 °C lower compared to air atmosphere in case of powders and thin films, respectively. Microstructure formed by near-columnar grains and small grains of equiaxed shape was observed in films treated in oxygen and air atmosphere, respectively.  相似文献   
998.
In contrast to the highly-selective channels of neurophysiology employing mostly the exclusion mechanism, different factors account for the selectivity of large channels. Elucidation of these factors is essential for understanding the permeation mechanisms in ion channels and their regulation in vivo. The interaction between divalent cations and a protein channel, the bacterial porin OmpF, has been investigated paying attention to the channel selectivity and its dependence on the solution pH. Unlike the experiments performed in salts of monovalent cations, the channel is now practically insensitive to pH, being anion selective all over the pH range considered. Electrostatic calculations based on the available structural data suggest that the binding of divalent cations has two main effects: (i) the pK(a) values of key ionizable groups differ significantly from those of the isolated groups in solution and (ii) the cation binding has a decisive impact on the effective electric charge regulating the channel selectivity. A simple molecular model based on statistical thermodynamics provides additional qualitative explanations to the experimental findings that could also be useful for other related systems like synthetic nanopores, ion exchange membranes, and polyelectrolyte multilayers.  相似文献   
999.
In this communication, we highlight that statistical approaches for chemical reactions describe reasonably well the low energy dynamics of the title process. Consequently, such methods prove to be valuable to compute rate constants from low to room temperatures. Results are compared with experiment and recent precise quantum wave packet calculations [J. Phys. Chem. A, 2009, 113, 5285].  相似文献   
1000.
The objective of this study was to provide some features on immobilization and partial characterization of lipases from wheat seeds. The optimum pH and temperature were found to be 5.5 and 32–37 °C, respectively. The stability of the concentrated enzymatic extract to high temperatures (25, 35, 45, and 55 °C) showed that the incubation of the extract at 55 °C led to its complete inactivation. The concentrated enzymatic extract kept 90% of its hydrolytic and esterification activities until 70 and 40 days of storage at 4 °C, respectively. The extract presented higher hydrolytic specificity to substrates of medium and long chains and higher esterification affinity to fatty acids of short and medium chains and alcohols with two and three carbon atoms. After the immobilization process using activated coal and sodium alginate as supports, an enhancement of about threefold in lipase activity was observed. The development of the present work permitted us to point out some characteristics of lipases from wheat seeds necessary for the proposition of new future industrial applications for this important biocatalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号