首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6521篇
  免费   257篇
  国内免费   47篇
化学   4816篇
晶体学   24篇
力学   208篇
数学   894篇
物理学   883篇
  2023年   62篇
  2022年   77篇
  2021年   127篇
  2020年   118篇
  2019年   148篇
  2018年   91篇
  2017年   82篇
  2016年   199篇
  2015年   168篇
  2014年   207篇
  2013年   373篇
  2012年   466篇
  2011年   502篇
  2010年   273篇
  2009年   239篇
  2008年   426篇
  2007年   442篇
  2006年   395篇
  2005年   371篇
  2004年   344篇
  2003年   307篇
  2002年   251篇
  2001年   85篇
  2000年   82篇
  1999年   66篇
  1998年   56篇
  1997年   60篇
  1996年   75篇
  1995年   49篇
  1994年   37篇
  1993年   27篇
  1992年   32篇
  1991年   33篇
  1990年   35篇
  1989年   27篇
  1988年   18篇
  1986年   22篇
  1985年   26篇
  1984年   39篇
  1983年   28篇
  1982年   38篇
  1981年   25篇
  1980年   38篇
  1979年   25篇
  1978年   29篇
  1977年   37篇
  1976年   27篇
  1975年   29篇
  1974年   17篇
  1973年   18篇
排序方式: 共有6825条查询结果,搜索用时 46 毫秒
91.
Photoinduced charge separation is a fundamental step in photochemical energy conversion. In the design of molecularly based systems for light-to-chemical energy conversion, this step is studied through the construction of two- and three-component systems (dyads and triads) having suitable electron donor and acceptor moieties placed at specific positions on a charge-transfer chromophore. The most extensively studied chromophores in this regard are ruthenium(II) tris(diimine) systems with a common 3MLCT excited state, as well as related ruthenium(II) bis(terpyridyl) systems. This Forum contribution focuses on dyads and triads of an alternative chromophore, namely, platinum(II) di- and triimine systems having acetylide ligands. These d8 chromophores all possess a 3MLCT excited state in which the lowest unoccupied molecular orbital is a pi orbital on the heterocyclic aromatic ligand. The excited-state energies of these Pt(II) chromophores are generally higher than those found for the ruthenium(II) tris(diimine) systems, and the directionality of the charge transfer is more certain. The first platinum diimine bis(arylacetylide) triad, constructed by attaching phenothiazene donors to the arylacetylide ligands and a nitrophenyl acceptor to 5-ethynylphenanthroline of the chromophore, exhibited a charge-separated state of 75-ns duration. The first Pt(tpy)(arylacetylide)+-based triad contains a trimethoxybenzamide donor and a pyridinium acceptor and has been structurally characterized. The triad has an edge-to-edge separation between donor and acceptor fragments of 27.95 Angstroms. However, while quenching of the emission is complete for this system, transient absorption (TA) studies reveal that charge transfer does not move onto the pyridinium acceptor. A new set of triads described in detail here and having the formula [Pt(NO2phtpy)(p-C triple-bond C-C6H4CH2(PTZ-R)](PF6), where NO2phtpy = 4'-{4-[2-(4-nitrophenyl)vinyl]phenyl}-2,2';6',2'-terpyridine and PTZ = phenothiazine with R = H, OMe, possess an unsaturated linkage between the chromophore and a nitrophenyl acceptor. While the parent chromophore [Pt(ttpy)(C triple-bond CC6H5)]PF6 is brightly luminescent in a fluid solution at 298 K, the triads exhibit complete quenching of the emission, as do the related donor-chromophore (D-C) dyads. Electrochemically, the triads and D-C dyads exhibit a quasi-reversible oxidation wave corresponding to the PTZ ligand, while the R = H triad and related C-A dyad display a facile quasi-reversible reduction assignable to the acceptor. TA spectroscopy shows that one of the triads possesses a long-lived charge-separated state of approximately 230 ns.  相似文献   
92.
Reactions of CrO2F2 with MF or MF2 gave the corresponding M2CrO2F4 and MCrO2F4 fluorochromates. With the Lewis Acids (SO3, TaF5, SbF5) and (CF3CO)2O known and new chromyl compounds [CrO2(CF3COO)2, CrO2(SO3F)2, CrO2FTaF6, CrO2FSbF6, CrO2FSb2F11] were produced. Chromyl fluoride and inorganic salts (CF3COONa and NaNO3) produced the following complexes - Na2CrO2F2(CF3COO)2 and Na2CrO2F2(NO3)2. Unusual solid products were obtained with CrO2F2 and NO, NO2, SO2.A new method of preparing CrO2F2 is also presented.  相似文献   
93.
High-temperature ion mobility measurements have been performed for alpha-helical Ac-A15K+H+ and globular Ac-KA15+H+ peptides. The alpha-helical and globular conformations do not melt into random coils as the temperature is raised. Instead, both conformations survive to the point where the peptide signals vanishes due to fragmentation. This occurs at 600 K for the globular Ac-KA15+H+ peptide and at 725 K for the alpha-helical Ac-A15K+H+. For the helical Ac-A15K+H+ peptide it appears that fragmentation is triggered by disruption of the helical conformation.  相似文献   
94.
A combined femtosecond Kerr gated time-resolved fluorescence (fs-KTRF) and picosecond Kerr gated time-resolved resonance Raman (ps-KTR(3)) study is reported for two p-hydroxyphenacyl (pHP) caged phototriggers, HPDP and HPA, in neat acetonitrile and water/acetonitrile (1:1 by volume) solvents. Fs-KTRF spectroscopy was employed to characterize the spectral properties and dynamics of the singlet excited states, and the ps-KTR(3) was used to monitor the formation and subsequent reaction of triplet state. These results provide important evidence for elucidation of the initial steps for the pHP deprotection mechanism. An improved fs-KTRF setup was developed to extend its detectable spectral range down to the 270 nm UV region while still covering the visible region up to 600 nm. This combined with the advantage of KTRF in directly monitoring the temporal evolution of the overall fluorescence profile enables the first time-resolved observation of dual fluorescence for pHP phototriggers upon 267 nm excitation. The two emitting components were assigned to originate from the (1)pipi (S(3)) and (1)npi (S(1)) states, respectively. This was based on the lifetime, the spectral location, and how these varied with the type of solvent. By correlating the dynamics of the singlet decay with the triplet formation, a direct (1)npi --> (3)pipi ISC mechanism was found for these compounds with the ISC rate estimated to be approximately 5 x 10(11) s(-)(1) in both solvent systems. These photophysical processes were found to be little affected by the kind of leaving group indicating the common local pHP chromophore is largely responsible for the fluorescence and relevant deactivation processes. The triplet lifetime was found to be approximately 420 and 2130 ps for HPDP and HPA, respectively, in the mixed solvent compared to 150 and 137 ns, respectively, in neat MeCN. The solvent and leaving group dependent quenching of the triplet is believed to be associated with the pHP deprotection photochemistry and indicates that the triplet is the reactive precursor for pHP photorelease reactions for the compounds examined in this study.  相似文献   
95.
A method for the high-yielding preparation of two tridentate, isoquinoline-derived ligands, involving successive Suzuki cross-coupling reactions, is described. The first ligand could be resolved via molecular complexation with N-benzylcinchonidinium chloride, while the second was resolved by chromatographic separation of its epimeric camphorsulfonates. The barrier to rotation about the central biaryl axis was evaluated via racemisation studies, and the absolute configuration assigned by X-ray crystallography.  相似文献   
96.
Density functional theory has been applied at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level to examine the energetics of alpha,beta- versus beta,gamma-unsaturation for some common organic functional groups. Specifically, the relative stabilities of allyl-X (H2C=CHCH2X) and 1-propenyl-X (H3CCH=CHX) isomers have been computed for X = methyl, vinyl, phenyl, formyl, acetyl, methoxy, methylthio, methylsulfinyl, methylsulfonyl, sulfamoyl, and methoxysulfonyl, and the results are compared to available experimental data. The intrinsic preference of 3 kcal/mol for the 1-propenyl isomer when X = CH3 is exceeded by 2-4 kcal/mol for first-row conjugating groups, but it is not met for the sulfur-containing groups. In particular, alpha,beta-unsaturation is favored by less than 1 kcal/mol for the sulfone and sulfonamide analogues, while it is preferred by 8 kcal/mol for the vinyl-substituted case. Detailed structural results and torsional energy profiles are also reported.  相似文献   
97.
Platinum(II) and palladium(II) complexes of the potentially hexadentate P,N-donor ligand family Ar2P-X-PAr2 (X = (CH2)2 [dmape], cyclic-C5H8 [dmapcp]; Ar = o-N,N-dimethylanilinyl) are described. In CH2Cl2, the dmape complexes exist as equilibrium mixtures of MCl2(P,P'-dmape) and [MCl(P,P',N-dmape)]Cl isomers (M = Pd, Pt), governed by deltaH(o) = -19 +/- 4 kJ mol(-1) and deltaS(o) = -100 +/- 30 J mol(-1) K(-1) for M = Pt, and deltaH(o) = -11 +/- 7 kJ mol(-1) and deltaS(o) = -60 +/- 20 J mol(-1) K(-1) for M = Pd. The water-soluble dmapcp complexes exist solely in the [MCl(P,P',N-dmapcp)]Cl form, but the free and coordinated anilinyl rings in these complexes are in slow diastereoselective exchange. X-ray crystal structures for MCl2(P,P'-dmape) (M = Pd, Pt), and the [PdCl(P,P',N-dmape)]+ and [PtCl(P,P',N-dmapcp)]+ cations, are presented. Some of the complexes show marginal activity in water for the catalyzed hydration of maleic to malic acid, giving about 6-7% conversion in 24 h at 100 degrees C and substrate:catalyst loadings of 100:1. Attempts to synthesize a PdCl(P,P',N-dmapm)+ species led instead to isolation of [Pd(mu-Cl)(P,P'-dmapm)]2[PF6]2 (dmapm = Ar2PCH2Ar2).  相似文献   
98.
We report investigations of hair surface potential under wetting at the nanometric scale by atomic force microscopy (AFM). Surface potential imaging was used to characterize the electrostatic properties of the hair samples. We found that the surface potential noticeably increases along the edges of the cuticles. These results are correlated with wetting behavior of different liquids performed using AFM in noncontact mode.  相似文献   
99.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
100.
The rotational spectra of the three carbon chain molecules vinyldiacetylene (hex-1-ene-3,5-diyne, C(6)H(4)), vinyltriacetylene (oct-1-ene-3,5,7-triyne, C8H4), and its cyano analog vinylcyanodiacetylene (1-cyanohex-5-ene-1,3-diyne, C7H3N) have been observed for the first time by Fourier transform microwave spectroscopy of a supersonic molecular beam. The molecules were observed as products of an electrical discharge through selected precursor mixtures: ethylene/diacetylene and vinylacetylene/diacetylene for the pure hydrocarbon molecules and vinylacetylene/cyanoacetylene for vinylcyanodiacetylene. The measurements yield precise sets of rotational constants that compare very well with theoretical constants obtained by quantum chemical calculations at the B3LYP/cc-pVTZ level of theory. Since these three carbon chains are similar in structure and composition to known astronomical molecules and because of their significant polarity, all three are candidates for radio astronomical detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号