首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   16篇
化学   366篇
力学   2篇
数学   26篇
物理学   114篇
  2023年   11篇
  2022年   19篇
  2021年   17篇
  2020年   14篇
  2019年   13篇
  2018年   13篇
  2017年   7篇
  2016年   20篇
  2015年   13篇
  2014年   17篇
  2013年   47篇
  2012年   33篇
  2011年   29篇
  2010年   22篇
  2009年   17篇
  2008年   32篇
  2007年   22篇
  2006年   25篇
  2005年   24篇
  2004年   26篇
  2003年   18篇
  2002年   15篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   4篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   8篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1970年   1篇
排序方式: 共有508条查询结果,搜索用时 15 毫秒
51.
Tuning the functional properties of nanocrystals is an important issue in nanoscience. Here, we are able to tune the photocatalytic properties of SnO2 nanocrystals by controlling their size and shape. A structural analysis was carried out by using X‐ray diffraction (XRD)/Rietveld and transmission electron microscopy (TEM). The results reveal that the number of oxygen‐related defects varies upon changing the size and shape of the nanocrystals, which eventually influences their photocatalytic properties. Time‐resolved spectroscopic studies of the carrier relaxation dynamics of the SnO2 nanocrystals further confirm that the electron–hole recombination process is controlled by oxygen/defect states, which can be tuned by changing the shape and size of the materials. The degradation of dyes (90 %) in the presence of SnO2 nanoparticles under UV light is comparable to that (88 %) in the presence of standard TiO2 Degussa P‐25 (P25) powders. The photocatalytic activity of the nanoparticles is significantly higher than those of nanorods and nanospheres because the effective charge separation in the SnO2 nanoparticles is controlled by defect states leading to enhanced photocatalytic properties. The size‐ and shape‐dependent photocatalytic properties of SnO2 nanocrystals make these materials interesting candidates for photocatalytic applications.  相似文献   
52.
The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single‐molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell‐protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on–off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core‐only QDs than for core–shell QDs.  相似文献   
53.
Ternary 3d -metal complexes [M(Tp (Ph))(B)](ClO 4) ( 1- 8), where M is Co(II), Ni(II), Cu(II) and Zn(II), Tp (Ph) is anionic tris(3-phenylpyrazolyl)borate, and B is N,N-donor heterocyclic base, namely, 1,10-phenanthroline (phen, 1- 4) and dipyrido[3,2- d:2',3'- f]quinoxaline (dpq, 5- 8), were prepared from a reaction of the perchlorate salt of the metal with KTp (Ph) and B in CH 2Cl 2. The complexes were characterized by various physicochemical methods. 4- 6 and 8 were structurally characterized by single-crystal X-ray crystallography. The crystal structures of the complexes show the presence of discrete cationic complexes having a square-pyramidal (4 + 1) coordination geometry in which two nitrogen atoms of the phenanthroline base (B) and two nitrogen atoms of the Tp (Ph) ligand occupy the basal plane and one nitrogen of the Tp (Ph) ligand binds at the axial site. The phenyl groups of the Tp (Ph) form a bowl-shaped structure that essentially encloses the {M(phen/dpq)} moiety. DNA-binding studies were carried out using various spectral techniques and from viscosity measurements. The complexes show moderate binding propensity to calf thymus DNA at the minor groove, giving binding constant values ( K b) of approximately 10 (4) M (-1). The complexes exhibit poor DNA-cleavage activity in the dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide (H 2O 2). The photoinduced DNA-cleavage activity of the complexes was investigated using UV-A radiation of 365 nm and visible light of two different wavelengths with a tunable multicolor Ar-Kr mixed gas ion laser source. The dpq complexes show efficient photoinduced DNA-cleavage activity via a metal-assisted photoexcitation process involving the formation of singlet oxygen as the cleavage active species in a type-II pathway. The paramagnetic d (7)-Co(II)-dpq and d (9)-Cu(II)-dpq complexes exhibit efficient DNA-cleavage activity in visible light. The paramagnetic d (8)-Ni(II)-dpq complex displays only minor DNA-cleavage activity in visible light. Diamagnetic d (10)-Zn(II)-dpq complex shows only UV-A light-induced DNA cleavage but no apparent DNA-cleavage activity in visible light. Steric protection of the photoactive quinoxaline moiety of the dpq ligand inside the hydrophobic {M(Tp (Ph))} molecular bowl has a positive effect on the photoinduced DNA-cleavage activity.  相似文献   
54.
The first highly conductive polyselenophene, namely, poly(3,4-ethylenedioxyselenophene) (PEDOS), was synthesized by taking advantage of a novel method for efficiently contracting the selenophene ring. PEDOS shows a relatively low band gap (1.4 eV), very high stability in the oxidized state, and a well-defined spectroelectrochemistry.  相似文献   
55.
Potential of mean force (PMF) calculations provide a reliable method for determination of the absolute binding free energies for protein-ligand systems. The common method used for this purpose -- umbrella sampling with weighted histogram analysis -- is computationally very laborious, which limits its applications. Recently, a much simpler alternative for PMF calculations has become available, namely, using Jarzynski's equality in steered molecular dynamics simulations. So far, there have been a few comparisons of the two methods and mostly in simple systems that do not reflect the complexities of protein-ligand systems. Here, we use both methods to calculate the PMF for ion permeation and ligand binding to ion channels. Comparison of results indicate that Jarzynski's method suffers from relaxation problems in complex systems and would require much longer simulation times to yield reliable PMFs for protein-ligand systems.  相似文献   
56.
N-heterocyclic carbene (NHC)-palladium(II) complex (GO@NHC-Pd) was synthesized on graphene oxide (GO) support via a simple and cost-effective multistep approach. The spectroscopic, microscopic, thermal, and surface analyses of GO@NHC-Pd confirmed the successful formation of the catalyst. The investigation of catalytic activity showed that GO@NHC-Pd was very effective in Suzuki–Miyaura as well as Hiyama cross-coupling. Being heterogeneous in nature, GO@NHC-Pd was recovered after each reaction cycle easily and reused for up to nine and six cycles in Suzuki–Miyaura and Hiyama cross-coupling, respectively, without significant loss of activity. Further exploration of the supercapacitor performance of GO@NHC-Pd catalyst assembled in a two-electrode cell configuration shown a maximum attained capacitance of 105.26 F/g at a current density of 0.1 A/g with good cycling stability of 96.89% over 2,500 cycles.  相似文献   
57.
The N-heterocyclic carbene, imidazole-2-ylidene, and its main group (13-15) analogues contain cyclically conjugated 6π electrons. Experimental 1H nuclear magnetic resonance (NMR) spectra suggest an increase in aromaticity along a period from left to right. Whereas the order along a group is as follows: period 2 > period 5 > period 4 > period 3 due to change in structure. To understand the order of aromaticity, the magnetically induced ring currents of the molecules are calculated using aromatic ring current shielding, gauge-including magnetically induced currents (GIMIC) method and Stanger's σ-model applying the gauge-including atomic orbitals NMR technique. It is found that GIMIC best describes the order of aromaticity especially along a group where current-profile changes on the bivalent atom down a group due to change in electron density. Moreover, the GIMIC provides the visualization of current by sign modulus and the anisotropy of the induced current density plots.  相似文献   
58.
Summary The activity and absorbed dose rate of the naturally occurring radionuclides, viz. 238U, 232 Th and 40K were determined in soil and rock samples collected around Kaiga site. The mean activity levels (Kaiga soil) of naturally occurring 232 Th are comparable with that in worldwide soil, while concentrations of 238U and 40K are lower than those in worldwide soil. The absorbed dose rate in outdoor air ranged 20-58 nGy . h-1 with a mean of 33.3 nGy . h-1, which is below the world average of 60 nGy . h-1. The total effective dose rate in outdoor air for soils ranged 25.6-74.4 mSv . y-1 with a mean of 43.0 mSv . y-1. The estimated dose rate at Kaiga is comparable with that estimated at Kakrapar and Rawatbhata and much less than that estimated at coastal sites of India.  相似文献   
59.
The sol-emulsion-gel method is used for the preparation of about 5-7 nm size Eu2O3 doped and coated Y2SiO5 nanoparticles at 1300 degrees C. Here, we report the role of surface coating, dopant concentration and temperature of heating on the modification of crystal structure and the photoluminescence properties of Y2SiO5:Eu3+ nanocrystals. It is found that photoluminescence properties are sensitive to the crystal structure which is again controlled by surface coating, concentration and heating temperature. The decay times are 0.76, 1.14, 1.23 and 1.40 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals prepared at 1100 degrees C (X1-Y2SiO5). However, in X2-Y2SiO5 crystal phase (at 1300 degrees C) the average decay times are 1.05, 1.35, 1.55 and 1.60 ms for 0.25, 0.5, 1.0 and 2.5 mol% Eu2O3 doped Y2SiO5 nanocrystals, indicating the photoluminescence properties depend on both the crystal structure and the concentration of ions. The emission intensity of the peak at 612 nm (5D0-->7F2) of the Eu3+-ions is found to be sensitive to the doping and surface coating of Y2SiO5 nanocrystals. The decay times are 1.55 and 1.70 ms for 1300 degrees C heated 1.0 mol% Eu2O3 doped and coated Y2SiO5 nanocrystals, respectively. Our analysis suggests that the site symmetry of ions plays a most important role in the modification of radiative relaxation mechanisms and as a result on the overall photoluminescence properties.  相似文献   
60.
According to the well-accepted mechanism, methyl-coenzyme M reductase (MCR) involves Ni-mediated thiolate-to-disulfide conversion that sustains its catalytic cycle of methane formation in the energy saving pathways of methanotrophic microbes. Model complexes that illustrate Ni-ion mediated reversible thiolate/disulfide transformation are unknown. In this paper we report the synthesis, crystal structure, spectroscopic properties and redox interconversions of a set of NiII complexes comprising a tridentate N2S donor thiol and its analogous N4S2 donor disulfide ligands. These complexes demonstrate reversible NiII-thiolate/NiII-disulfide (both bound and unbound disulfide-S to NiII) transformations via thiyl and disulfide monoradical anions that resemble a primary step of MCR's catalytic cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号