首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   12篇
  国内免费   2篇
化学   552篇
晶体学   5篇
力学   7篇
数学   193篇
物理学   167篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   15篇
  2014年   6篇
  2013年   34篇
  2012年   39篇
  2011年   78篇
  2010年   41篇
  2009年   30篇
  2008年   59篇
  2007年   56篇
  2006年   49篇
  2005年   49篇
  2004年   31篇
  2003年   25篇
  2002年   23篇
  2001年   19篇
  2000年   21篇
  1999年   12篇
  1998年   15篇
  1997年   13篇
  1996年   20篇
  1995年   22篇
  1994年   19篇
  1993年   11篇
  1992年   17篇
  1991年   16篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1979年   5篇
  1976年   7篇
  1975年   5篇
  1974年   11篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
排序方式: 共有924条查询结果,搜索用时 9 毫秒
41.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross‐coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross‐coupling partners without the need of co‐catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   
42.
There is considerable interest in polyazine N-oxides as potential frameworks for energetic compounds with relatively high enthalpies of formation and crystal densities. The N+→O? linkages, if appropriately located, may diminish the destabilization associated with nitrogen catenation. We have computationally characterized 40 N-oxides of the isomeric diazines, triazines, and tetrazines in terms of their geometries, relative energies, and (for a representative selection) electrostatic potentials. The presence of N+→O? linkages does partially counteract the destabilizing effects of nitrogen catenation, although the isomers with complete catenation remain the least stable. The stabilizing influence of N+→O? groups, and the accompanying changes in bond lengths, can be understood in terms of resonance charge delocalization to the polyazine rings. The N(O)–N(O) bonds between nitrogens that both bear oxygens tend to be relatively weak. The electrostatic potentials above the polyazine rings become increasingly positive as there are more nitrogens and oxygens; eventually they are positive above all of the carbons and nitrogens and possibly even the oxygens, with negative regions only on the peripheries of the molecules. However, the nitrogens that bear oxygens always have more positive potentials than those that do not.  相似文献   
43.
Over the past decades, several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier. So far, in high-performance liquid chromatography, most attention has been paid to micellar liquid chromatography and immobilized artificial membrane (IAM) LC. IAMLC has been described as a viable approach, since the stationary phase emulates the lipid environment of a cell membrane. However, research in IAMLC has almost exclusively been limited to phosphatidylcholine (PC)-based stationary phases, even though PC is only one of the lipids present in cell membranes. In this article, sphingomyelin and cholester stationary phases have been tested for the first time towards their ability to predict drug penetration across the blood-brain barrier. Upon comparison with the PC stationary phase, the sphingomyelin- and cholester-based columns depict similar predictive performance. Combining data from the different stationary phases did not lead to improvements of the models. Figure
Schematic representation of how IAM-LC is used to predict drug penetration across the blood-brain barrier.  相似文献   
44.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross-coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross-coupling partners without the need of co-catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   
45.
The elution order of the hop α- and β-acids has been studied under different modes of electrokinetic separation. A model is advanced to explain the shorter migration times of the more hydrophobic β-acids compared to the α-acids in micellar electrokinetic chromatography (MEKC). For quality control of the bitter principles in hops, the ruggedness of electrokinetic separation could be improved by replacing MEKC by microemulsion electrokinetic chromatography (MEEKC).  相似文献   
46.
47.
Carboxylic acid is a commonly utilized functional group for covalent surface conjugation of carbon nanoparticles that is typically generated by acid oxidation. However, acid oxidation generates additional oxygen containing groups, including epoxides, ketones, aldehydes, lactones, and alcohols. We present a method to specifically enrich the carboxylic acid content on fluorescent nanodiamond (FND) surfaces. Lithium aluminum hydride is used to reduce oxygen containing surface groups to alcohols. The alcohols are then converted to carboxylic acids through a rhodium (II) acetate catalyzed carbene insertion reaction with tert–butyl diazoacetate and subsequent ester cleavage with trifluoroacetic acid. This carboxylic acid enrichment process significantly enhanced nanodiamond homogeneity and improved the efficiency of functionalizing the FND surface. Biotin functionalized fluorescent nanodiamonds were demonstrated to be robust and stable single-molecule fluorescence and optical trapping probes.  相似文献   
48.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   
49.
Two new marine sediment standard reference materials (SRMs), SRM 1941b Organics in Marine Sediment and SRM 1944 New York/New Jersey Waterway Sediment, have been recently issued by the National Institute of Standards and Technology (NIST) for the determination of organic contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, and chlorinated pesticides. Both sediment SRMs were analyzed using multiple analytical methods including gas chromatography/mass spectrometry (GC/MS) on columns with different selectivity, reversed-phase liquid chromatography with fluorescence detection (for PAHs only), and GC with electron capture detection (for PCBs and pesticides only). SRM 1941b has certified concentrations for 24 PAHs, 29 PCB congeners, and 7 pesticides, and SRM 1944 has certified concentrations for 24 PAHs, 29 PCB congeners, and 4 pesticides. Reference concentrations are also provided for an additional 58 (SRM 1941b) and 39 (SRM 1944) PAHs, PCB congeners, and pesticides. SRM 1944, which was collected from multiple sites within New York/New Jersey coastal waterways, has contaminant concentrations that are generally a factor of 10–20 greater than SRM 1941b, which was collected in the Baltimore (Maryland) harbor. These two SRMs represent the most extensively characterized marine sediment certified reference materials available for the determination of organic contaminants.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
50.
Reactions of the anticancer complex [(eta(6)-bip)Ru(en)Cl](+) (where bip is biphenyl and en is ethylenediamine) with the tripeptide glutathione (gamma-L-Glu-L-Cys-Gly; GSH), the abundant intracellular thiol, in aqueous solution give rise to two ruthenium cluster complexes, which could not be identified by electrospray mass spectrometry (ESI-MS) using a quadrupole mass analyzer. Here we use Fourier transform ion cyclotron mass spectrometry (nanoLC-FT-ICR MS) to identify the clusters separated by nanoscale liquid chromatography as the tetranuclear complex [{(eta(6)-bip)Ru(GSO(2))}(4)](2-) (2) and dinuclear complex [{(eta(6)-bip)Ru(GSO(2))(2)}(2)](8-) (3) containing glutathione sulfinate (GSO(2)) ligands. Use of (18)OH(2) showed that oxygen from water can readily be incorporated into the oxidized glutathione ligands. These data illustrate the power of high-resolution MS for identifying highly charged multinuclear complexes and elucidating novel reaction pathways for metallodrugs, including ligand-based redox reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号