首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   12篇
  国内免费   2篇
化学   552篇
晶体学   5篇
力学   7篇
数学   193篇
物理学   167篇
  2023年   3篇
  2022年   5篇
  2021年   4篇
  2020年   6篇
  2019年   9篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   15篇
  2014年   6篇
  2013年   34篇
  2012年   39篇
  2011年   78篇
  2010年   41篇
  2009年   30篇
  2008年   59篇
  2007年   56篇
  2006年   49篇
  2005年   49篇
  2004年   31篇
  2003年   25篇
  2002年   23篇
  2001年   19篇
  2000年   21篇
  1999年   12篇
  1998年   15篇
  1997年   13篇
  1996年   20篇
  1995年   22篇
  1994年   19篇
  1993年   11篇
  1992年   17篇
  1991年   16篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   4篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1979年   5篇
  1976年   7篇
  1975年   5篇
  1974年   11篇
  1973年   10篇
  1972年   3篇
  1971年   4篇
排序方式: 共有924条查询结果,搜索用时 15 毫秒
11.
We have investigated the transport properties of nanopore alumina membranes that were rendered hydrophobic by functionalization with octadecyltrimethoxysilane (ODS). The pores in these ODS-modified membranes are so hydrophobic that they are not wetted by water. Nevertheless, nonionic molecules can be transported from an aqueous feed solution on one side of the membrane, through the dry nanopores, and into an aqueous receiver solution on the other side. The transport mechanism involves Langmuir-type adsorption of the permeating molecule onto the ODS layers lining the pore walls, followed by solid-state diffusion along these ODS layers; we have measured the diffusion coefficients associated with this transport process. We have also investigated the transport properties of membranes prepared by filling the ODS-modified pores with the water-immiscible (hydrophobic) liquid mineral oil. In this case the transport mechanism involves solvent extraction of the permeating molecule into the mineral oil subphase confined with the pores, followed by solution-based diffusion through this liquid subphase. Because of this different transport mechanism, the supported-liquid membranes show substantially better transport selectivity than the ODS-modified membranes that contain no liquid subphase.  相似文献   
12.
Protein biosensors based on biofunctionalized conical gold nanotubes   总被引:1,自引:0,他引:1  
There is increasing interest in the concept of using nanopores as the sensing elements in biosensors. The nanopore most often used is the alpha-hemolysin protein channel, and the sensor consists of a single channel embedded within a lipid bilayer membrane. An ionic current is passed through the channel, and analyte species are detected as transient blocks in this current associated with translocation of the analyte through the channel-stochastic sensing. While this is an extremely promising sensing paradigm, it would be advantageous to eliminate the very fragile lipid bilayer membrane and perhaps to replace the biological nanopore with an abiotic equivalent. We describe here a new family of protein biosensors that are based on conically shaped gold nanotubes embedded within a mechanical and chemically robust polymeric membrane. While these sensors also function by passing an ion current through the nanotube, the sensing paradigm is different from the previous devices in that a transient change in the current is not observed. Instead, the protein analyte binds to a biochemical molecular-recognition agent at the mouth of the conical nanotube, resulting in complete blockage of the ion current. Three different molecular-recognition agents, and correspondingly three different protein analytes, were investigated: (i) biotin/streptavidin, (ii) protein-G/immunoglobulin, and (iii) an antibody to the protein ricin with ricin as the analyte.  相似文献   
13.
Using a novel non-linear optical technique enantiomeric excess within a translationally disordered overlayer on a metal surface has been monitored for the first time.  相似文献   
14.
15.
16.
The CGC analysis of 25 organophosphorus and organonitrogen pesticides was optimized on two different stationary phases, namely a 5% diphenyl dimethyl silicone (SE-54 type) and a 50% diphenyl dimethyl silicone (OV-17 type) by selecting the best temperature program conditions, using computer simulation.  相似文献   
17.
A new process for preparing oligonucleotide arrays is described that uses surface grafting chemistry which is fundamentally different from the electrostatic adsorption and organic covalent binding methods normally employed. Solid supports are modified with a mixed organic/inorganic zirconium phosphonate monolayer film providing a stable, well-defined interface. Oligonucleotide probes terminated with phosphate are spotted directly on to the zirconated surface forming a covalent linkage. Specific binding of terminal phosphate groups with minimal binding of the internal phosphate diesters has been demonstrated. The mixed organic/inorganic thin films have also been extended for use arraying DNA duplex probes, and therefore represent a viable general approach to DNA-based bioarrays. Ideas for interfacing mixed organic/inorganic interfaces to other bioapplications are also discussed.  相似文献   
18.
An investigation of the liquid chromatography of the minor capsaicinoids in a commercial capsaicinoid mixture is reported. Twelve stationary phases including C8, C18, C30, phenyl, and cation-exchange chemistries were examined in combination with isocratic aqueous methanol and aqueous acetonitrile mobile phases. A phenyl stationary phase and aqueous acetonitrile mobile phase baseline-resolved 7 of 11 capsaicinoids, and selected ion chromatograms (LC–ESI-MS) demonstrated this was the most effective reversed-phase separation. Argentation chromatography with an alkyl or phenyl column and aqueous silver nitrate–methanol mobile phase revealed the presence of the 6-ene-8-methyl and 6-ene-9-methyl homocapsaicin isomers and the absence of 7-ene-9-methyl homocapsaicin. A mixed phenyl–cation-exchange stationary phase (charged with silver ion) enabled unique and useful separations of the capsaicinoids.  相似文献   
19.
Raf kinase inhibitor protein (RKIP) is a modulator of cell signaling that functions as an endogenous inhibitor of multiple kinases. We demonstrate here a positive role for RKIP in the regulation of cell locomotion. We discovered that RKIP is the relevant cellular target of locostatin, a cell migration inhibitor. Locostatin abrogates RKIP's ability to bind and inhibit Raf-1 kinase, and it acts by disrupting a protein-protein interaction, an uncommon mode of action for a small molecule. Small interfering RNA-mediated silencing of RKIP expression also reduces cell migration rate. Overexpression of RKIP converts epithelial cells to a highly migratory fibroblast-like phenotype, with dramatic reduction in the sensitivity of cells to locostatin. RKIP is therefore the compound's valid target and a key regulator of cell motility.  相似文献   
20.
A multi-residue method to determine 85 pesticides, including organochlorine pesticides, carbamates, organophosphorus pesticides, and pyrethroids, in vegetables, fruit, and green tea, has been developed. The method is based on stir bar sorptive extraction (SBSE) coupled to thermal desorption (TD) and retention time locked (RTL) GC-MS operating in the scan mode. Samples are extracted with methanol and diluted with water prior to SBSE. Dilution of the methanol extract before SBSE was optimized to obtain high sensitivity and to minimize adsorption onto the glass wall of the extraction vessel as well as to minimize sample matrix effects (particularly for the pesticides with high log K(o,w) values). The optimized method consists of a dual SBSE extraction performed simultaneously on respectively a twofold and a fivefold diluted methanol extract. After extraction, the two stir bars are placed in a single glass thermal desorption liner and are simultaneously desorbed. The method showed good linearity (r2 > 0.9900) and high sensitivity (limit of detection: < 5 microg kg(-1)) for most of the target pesticides. The method was applied to the determination of pesticides at low microg kg(-1) in tomato, cucumber, green soybeans, spinach, grapes, and green tea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号