首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   0篇
化学   81篇
力学   1篇
物理学   76篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   13篇
  2007年   12篇
  2006年   11篇
  2005年   13篇
  2004年   13篇
  2003年   5篇
  2002年   9篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   8篇
  1994年   10篇
  1993年   1篇
  1992年   8篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
91.
X-ray diffraction experiments have shown that sodium exhibits a dramatic pressure-induced drop in melting temperature, which extends from 1000 K at ~30 GPa to as low as room temperature at ~120 GPa. Despite significant theoretical effort to understand the anomalous melting, its origins are still debated. In this work, we reconstruct the sodium phase diagram by using an ab initio quality neural-network potential. Furthermore, we demonstrate that the reentrant behavior results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.  相似文献   
92.
The interaction between gas-phase nitric acid and the graphite surface is taken as a simple model of interactions occurring at the surface of atmospheric soot particles. In particular, we study the heterogeneous processes that lead to the dissociation of the nitric acid and the production of nitrous acid. The atomistic details of the reaction mechanisms are reproduced by use of the new metadynamics method. The binding interactions of the HNO3 molecule and its fragments with the graphite surface are calculated, and the role of the surface in catalyzing the reaction is taken into account. From the reactive trajectory generated by the metadynamics, it is seen that the path goes through several different intermediate states. We analyze in detail the electronic structures and spin density distributions of the relevant products and report on the mechanisms and the main features of the transition regions relative to all the activated processes observed.  相似文献   
93.
94.
95.
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.  相似文献   
96.
The high-pressure phase transition in the deuterated lithium hydroxide crystalline state has been studied by Car-Parrinello molecular dynamics simulations, in the constant-pressure, constant-temperature ensemble. The recently developed metadynamics approach has been applied to encourage the system to transform into different phases in an affordable simulation time. A previously not completely characterized high-pressure phase has been obtained. The structural and spectroscopic properties have been studied and compared with the neutron scattering, infrared and Raman measurements. It has been found that the calculated structure differs slightly from the experimental hypothesis, and that the presence of strong hydrogen bonds is the source of the red shift and of the characteristic features of the OD-stretching bands in both IR and Raman spectra.  相似文献   
97.
Canonical sampling through velocity rescaling   总被引:2,自引:0,他引:2  
The authors present a new molecular dynamics algorithm for sampling the canonical distribution. In this approach the velocities of all the particles are rescaled by a properly chosen random factor. The algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can still be defined that remains constant during the evolution. In numerical applications this quantity can be used to measure the accuracy of the sampling. The authors illustrate the properties of this new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its performance is excellent and largely independent of the thermostat parameter also with regard to the dynamic properties.  相似文献   
98.
99.
Computer simulations using density functional theory based ab initio path integral molecular dynamics have been carried out to investigate hydrogen bonding in water under ambient conditions. Structural predictions for both H2O and D2O, which include the effects of zero-point energy, thermal motion, and many body polarization effects, are contrasted with classical simulations that ignore nuclear quantum effects. The calculated effect of H/D isotope substitution on the water structure is much smaller than the difference between the classical and quantum path integral results, and is in excellent agreement with the measured H/D difference data from both neutron and x-ray scattering.  相似文献   
100.
A first principles study of a hydrated electron in water at ordinary and supercritical conditions is presented. In the first case, the electron cleaves a cavity in the hydrogen bond network in which six H2O molecules form the solvation shell. The electron distribution assumes an ellipsoidal shape, and the agreement of the computed and the experimental optical absorption seems to support this picture. At supercritical conditions, instead, the H-bond network is not continuous and allows us to predict that the electron localizes in preexisting cavities in a more isotropic way. Four water molecules form the solvation shell but the localization time shortens significantly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号