We present the first unquenched lattice-QCD calculation of the form factors for the decay \(B\rightarrow D^*\ell \nu \) at nonzero recoil. Our analysis includes 15 MILC ensembles with \(N_f=2+1\) flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from \(a\approx 0.15\) fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valence b and c quarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element \(|V_{cb}|\). We obtain \(\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}\). The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall \(\chi ^2\text {/dof} = 126/84\), which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict \(R(D^*) = 0.265 \pm 0.013\), which confirms the current tension between theory and experiment.
A comprehensive numerical tool has been developed for the evaluation of the performances of Radio over Fiber (RoF) links intended for wireless signal distribution.At the transmitter end an appropriate set of rate equations allows to model the optical source as a solitary laser or as an appropriately injection locked laser. The optical channel is modeled putting into account the combined effect of fiber dispersion, laser source non ideal performances (e.g. non-linear effects, frequency chirp), and quadratic detection of the receiving photodiode. The simulation model developed can be a useful tool at the design stage allowing a preliminary evaluation of the characteristics of real RoF links. 相似文献
The canonical quantization of any hyperbolic symplectomorphismA of the 2-torus yields a periodic unitary operator on aN-dimenional Hilbert space,N=1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N,N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly speread in phase space. 相似文献
We present Monte Carlo simulations of the isotropic-polar (IP) phase transition in an amphiphilic fluid carried out in the isothermal-isobaric ensemble. Our model consists of Lennard-Jones spheres where the attractive part of the potential is modified by an orientation-dependent function. This function gives rise to an angle dependence of the intermolecular attractions corresponding to that characteristic of point dipoles. Our data show a substantial system-size dependence of the dipolar order parameter. We analyze the system-size dependence in terms of the order-parameter distribution and a cumulant involving its first and second moments. The order parameter, its distribution, and susceptibility observe the scaling behavior characteristic of the 3D Ising universality class. Because of this scaling behavior and because all cumulants have a common intersection irrespective of system size we conclude that the IP phase transition is continuous. Considering pressures 1.3 ≤ P ≤ 3.0 we demonstrate that a line of continuous phase transitions exists which is analogous to the Curie line in systems exhibiting a ferroelectric transition. Our results are qualitatively consistent with Landau's theory of continuous phase transitions. 相似文献
Sedimentation has played a key role in the development of colloid science. In fact, it is because of the celebrated experiments by Perrin, yielding a concrete demonstration of molecular reality and giving strong support to Einstein's theory of Brownian motion, that colloids enter the realm of basic physics. Subsequent investigations have shown that a lot more can be learnt both from sedimentation equilibrium and from particle settling dynamics. These advances, together with new experimental approaches, will be reviewed in this paper. Yet, we shall also show that inquiring about gravity settling is far from being a closed matter: for instance, the concept of buoyancy for a settling colloidal mixture is far from being obvious. Moreover, sedimentation holds novel surprises, such as colloidal inflations and settling disasters, showing that a simple external field like gravity may induce mind-boggling, and theoretically challenging effects. 相似文献
We consider a basic model of digital memory where each cell is composed of a reflecting medium with two possible reflectivities. By fixing the mean number of photons irradiated over each memory cell, we show that a nonclassical source of light can retrieve more information than any classical source. This improvement is shown in the regime of few photons and high reflectivities, where the gain of information can be surprising. As a result, the use of quantum light can have nontrivial applications in the technology of digital memories, such as optical disks and barcodes. 相似文献
We examine baryonic matter at a quark chemical potential of the order of the confinement scale μ(q)~Λ(QCD). In this regime, quarks are supposed to be confined but baryons are close to the "tightly packed limit" where they nearly overlap in configuration space. We show that this system will exhibit a percolation phase transition when varied in the number of colors N(c): at high N(c), large distance correlations at the quark level are possible even if the quarks are essentially confined. At low N(c), this does not happen. We discuss the relevance of this for dense nuclear matter, and argue that our results suggest a new "phase transition," varying N(c) at constant μ(q). 相似文献