首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   30篇
  国内免费   4篇
化学   1017篇
晶体学   19篇
力学   29篇
数学   88篇
物理学   429篇
  2024年   17篇
  2023年   16篇
  2022年   38篇
  2021年   33篇
  2020年   29篇
  2019年   29篇
  2018年   29篇
  2017年   37篇
  2016年   50篇
  2015年   30篇
  2014年   43篇
  2013年   147篇
  2012年   103篇
  2011年   102篇
  2010年   68篇
  2009年   73篇
  2008年   84篇
  2007年   54篇
  2006年   42篇
  2005年   49篇
  2004年   40篇
  2003年   25篇
  2002年   35篇
  2001年   25篇
  2000年   23篇
  1999年   18篇
  1998年   7篇
  1997年   15篇
  1996年   17篇
  1995年   20篇
  1994年   14篇
  1993年   21篇
  1992年   7篇
  1991年   11篇
  1990年   12篇
  1989年   14篇
  1988年   14篇
  1987年   7篇
  1986年   7篇
  1985年   13篇
  1984年   16篇
  1983年   16篇
  1982年   8篇
  1981年   11篇
  1980年   15篇
  1979年   16篇
  1978年   15篇
  1977年   19篇
  1974年   6篇
  1973年   9篇
排序方式: 共有1582条查询结果,搜索用时 15 毫秒
31.
In this paper we study properties of numerical solutions of Burger’s equation. Burgers’ equation is reduced to the heat equation on which we apply the Douglas finite difference scheme. The method is shown to be unconditionally stable, fourth order accurate in space and second order accurate in time. Two test problems are used to validate the algorithm. Numerical solutions for various values of viscosity are calculated and it is concluded that the proposed method performs well.  相似文献   
32.
The effects of an additional keto group on absorption wavelength and the corresponding metal complexes Zn(II), Cu(II) In(III) on singlet oxygen production and photodynamic efficacy were examined among the alkyl ether analogs of pyropheophorbide-a. For the preparation of the desired photosensitizers, the methyl 13(2)-oxo-pyropheophorbide-a obtained by reacting methyl pyropheophorbide-a with aqueous LiOH-THF was converted into a series of alkyl ether analogs. These compounds were evaluated for photophysical properties and in vitro (by means of the MTT assay and intracellular localization in RIF cells) and in vivo (in C3H mice implanted with RIF tumors) photosensitizing efficacy. Among the alkyl ether derivatives, the methyl 3-decyloxyethyl-3-devinyl-13(2)-oxo-pyropheophorbide-a was found to be most effective and the insertion of In(III) into this analog further enhanced its in vitro and in vivo photosensitizing efficacy. Fluorescence microscopy showed that, in contrast to the hexyl and dodecyl ether derivatives of HPPH (which localize in mitochondria and lysosomes, respectively), the diketo-analogs and their In(III) complexes localized in Golgi bodies. The preliminary in vitro and in vivo results suggest that, in both free-base and metalated analogs, the introduction of an additional keto group at the five-member exocyclic ring in pyropheophorbide-a diminishes its photosensitizing efficacy. This may be due to a shift in subcellular localization from mitochondria to the Golgi bodies. The further introduction of In(III) enhances photoactivity, but not by shifting the localization of the photosensitizer.  相似文献   
33.
The novel use of nanofibers as a physical barrier between blood and medical devices has allowed for modifiable, innovative surface coatings on devices ordinarily plagued by thrombosis, delayed healing, and chronic infection. In this study, the nitric oxide (NO) donor S‐nitrosoglutathione (GSNO) is blended with the biodegradable polymers polyhydroxybutyrate (PHB) and polylactic acid (PLA) for the fabrication of hemocompatible, antibacterial nanofibers tailored for blood‐contacting applications. Stress/strain behavior of different concentrations of PHB and PLA is recorded to optimize the mechanical properties of the nanofibers. Nanofibers incorporated with different concentrations of GSNO (10, 15, 20 wt%) are evaluated based on their NO‐releasing kinetics. PLA/PHB + 20 wt% GSNO nanofibers display the greatest NO release over 72 h (0.4–1.5 × 10?10 mol mg?1 min?1). NO‐releasing fibers successfully reduce viable adhered bacterial counts by ≈80% after 24 h of exposure to Staphylococcus aureus. NO‐releasing nanofibers exposed to porcine plasma reduce platelet adhesion by 64.6% compared to control nanofibers. The nanofibers are found noncytotoxic (>95% viability) toward NIH/3T3 mouse fibroblasts, and 4′,6‐diamidino‐2‐phenylindole and phalloidin staining shows that fibroblasts cultured on NO‐releasing fibers have improved cellular adhesion and functionality. Therefore, these novel NO‐releasing nanofibers provide a safe antimicrobial and hemocompatible coating for blood‐contacting medical devices.  相似文献   
34.
An efficient and short synthesis of (2R,3R)- and (2S,3S)-β-hydroxyornithine 1a-b is described using Sharpless asymmetric dihydroxylation and regioselective nucleophilic opening of a cyclic sulfite as the key steps.  相似文献   
35.
The equilibrium geometries and bond dissociation energies of 16VE and 18VE complexes of ruthenium and iron with a naked carbon ligand are reported using density functional theory at the BP86/TZ2P level. Bond energies were also calculated at CCSD(T) using TZ2P quality basis sets. The calculations of [Cl2(PMe3)2Ru(C)] (1Ru), [Cl2(PMe3)2Fe(C)] (1Fe), [(CO)2(PMe3)2Ru(C)] (2Ru), [(CO)2(PMe3)2Fe(C)] (2Fe), [(CO)4Ru(C)] (3Ru), and [(CO)4Fe(C)] (3Fe) show that 1Ru has a very strong Ru-C bond which is stronger than the Fe-C bond in 1Fe. The metal-carbon bonds in the 18VE complexes 2Ru-3Fe are weaker than those in the 16VE species. Calculations of the related carbonyl complexes [(PMe3)2Cl2Ru(CO)] (4Ru), [(PMe3)2Cl2Fe(CO)] (4Fe), [(PMe3)2Ru(CO)3] (5Ru), [(PMe3)2Fe(CO)3] (5Fe), [Ru(CO)5] (6Ru), and [Fe(CO)5] (6Fe) show that the metal-CO bonds are much weaker than the metal-C bonds. The 18VE iron complexes have a larger BDE than the 18VE ruthenium complexes, while the opposite trend is calculated for the 16VE compounds. Charge and energy decomposition analyses (EDA) have been carried out for the calculated compounds. The Ru-C and Fe-C bonds in 1Ru and 1Fe are best described in terms of two electron-sharing bonds with sigma and pi symmetry and one donor-acceptor pi bond. The bonding situation in the 18 VE complexes 2Ru-3Fe is better described in terms of closed shell donor-acceptor interactions in accordance with the Dewar-Chatt-Duncanson model. The bonding analysis clearly shows that the 16VE carbon complexes 1Ru and 1Fe are much more strongly stabilized by metal-C sigma interactions than the 18VE complexes which is probably the reason why the substituted homologue of 1Ru could become isolated. The EDA calculations show that the nature of the TM-C and TM-CO binding interactions resembles each other. The absolute values for the energy terms which contribute to Delta(Eint) are much larger for the carbon complexes than for the carbonyl complexes, but the relative strengths of the energy terms are not very different from each other. The pi bonding contribution to the orbital interactions in the carbon complexes is always stronger than sigma bonding. There is no particular bonding component which is responsible for the reversal of the relative bond dissociation energies of the Ru and Fe complexes when one goes from the 16VE complexes to the 18VE species. That the 18 VE compounds have longer and weaker TM-C and TM-CO bonds than the respective 16 VE compounds holds for all complexes. This is because the LUMO in the 16 VE species is a sigma-antibonding orbital which becomes occupied in the 18 VE species.  相似文献   
36.
Molecular layers formed from 4-trifluoromethylbenzenediazonium tetrafluoroborate and 4-Methylbenzenediazonium tetrafluoroborate have been assembled on H-passivated Si(111) and studied by UHV STM and XPS. STM imaging shows well-developed Si(111) step edges and terraces both on Si(111):H and Si(111) substrates covered with a molecular layer. STM I(V) data acquired at different tip-substrate separations reveals a factor of approximately 10 enhancement in current for positive bias voltage when current flows through the 4-trifluoromethyl molecule when compared to the 4-methyl variant. The observed current enhancement in I(V) can be understood by comparing the projected density of states of the two molecule-Si systems calculated using a density functional theory local density approximation after geometry optimization was performed via the conjugate gradient method. XPS data independently confirm that H-passivated Si(111) remains oxygen free for short exposures to ambient conditions and provide evidence that the molecules chemically react with the silicon surface.  相似文献   
37.
Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of interacting fragments. The π-bonding contribution is 14-22% of the total orbital contribution.  相似文献   
38.
A short, 4-step route to the scaffold of frondosin A and B is reported. The [1-methoxycarbonyl-5-(2',5'-dimethoxyphenyl)pentadienyl]Fe(CO)(3)(+) cation was prepared in two steps from (methyl 6-oxo-2,4-hexadienoate)Fe(CO)(3). Reaction of this cation with isopropenyl Grignard or cyclohexenyllithium reagents affords (2-alkenyl-5-aryl-1-methoxycarbonyl-3-pentene-1,5-diyl)Fe(CO)(3) along with other addition products. Oxidative decomplexation of these (pentenediyl)iron complexes, utilizing CuCl(2), affords 6-aryl-3-methoxycarbonyl-1,4-cycloheptadienes via the presumed intermediacy of a cis-divinylcyclopropane.  相似文献   
39.
A nanocomposite of Pd? TiO2? SiO2 is developed through a sol‐gel process from the reaction products of titanium isopropoxide followed by mixing the same with palladium linked 3‐glycidoxypropyltrimethoxysilane. The reaction product is sonicated and calcinated to obtain the nanocomposite of Pd? TiO2? SiO2. The calcination at 600 °C yielded an amorphous structure whereas at 900 °C it resulted into a nanocrystalline structure. The nanocomposite of palladium was further characterized by TEM, XRD, IR and EDS. The material acts as an efficient electrocatalyst. Electrocatalysis of ascorbic acid is observed at 0.1 V vs. Ag/AgCl, shows linearity between 1 µM and 1 mM in 0.1 M phosphate buffer (pH 7.0).  相似文献   
40.
Summary Organometallic compounds of general formula (SCN)2M(NCSeHgR)2 (M=CoII, NiII, R=n-C5H11,i-C5H11) have been prepared. They behave as Lewis acids, forming complexes with pyridine and 2,2-bipyridyl, characterized by elemental analysis, molecular weight, molar conductance, i.r. spectral (4000–200 cm–1), electronic spectral and magnetic susceptibility measurements. The Lewis acids are monomeric with bridging thiocyanate, or selenocyanate between M2+ and Hg2+. Cobalt and nickel acquire tetrahedral and octahedral configurations respectively through axial bridging, whereas mercury retains its linearity. Pyridine links to the metal in the Lewis acid and forms L2(SCN)2M(NCSeHgR)2 complexes. Bipyridyl ruptures the NCX bridge and forms cationic-anionic [M(bipy)3][(NCS)(NCSe)HgR]2 complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号