首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6633篇
  免费   158篇
  国内免费   18篇
化学   4006篇
晶体学   84篇
力学   152篇
数学   760篇
物理学   1807篇
  2021年   56篇
  2020年   71篇
  2019年   61篇
  2018年   55篇
  2016年   132篇
  2015年   114篇
  2014年   117篇
  2013年   264篇
  2012年   254篇
  2011年   241篇
  2010年   143篇
  2009年   159篇
  2008年   218篇
  2007年   220篇
  2006年   219篇
  2005年   211篇
  2004年   164篇
  2003年   168篇
  2002年   162篇
  2001年   148篇
  2000年   141篇
  1999年   98篇
  1998年   94篇
  1997年   102篇
  1996年   115篇
  1995年   107篇
  1994年   86篇
  1993年   106篇
  1992年   94篇
  1991年   84篇
  1990年   63篇
  1989年   83篇
  1988年   88篇
  1987年   77篇
  1986年   71篇
  1985年   123篇
  1984年   101篇
  1983年   81篇
  1982年   95篇
  1981年   99篇
  1980年   57篇
  1979年   81篇
  1978年   76篇
  1977年   82篇
  1976年   73篇
  1975年   79篇
  1973年   73篇
  1968年   89篇
  1967年   99篇
  1966年   98篇
排序方式: 共有6809条查询结果,搜索用时 15 毫秒
251.
A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.  相似文献   
252.
253.
In continuation of our search for leads from medicinal plants against protozoal pathogens, we detected antileishmanial activity in polar fractions of a dichloromethane extract from Boswellia serrata resin. 11-keto-β-boswellic acid (KBA) could be isolated from these fractions and was tested in vitro against Leishmania donovani axenic amastigotes along with five further boswellic acid derivatives. 3-O-acetyl-11-keto-β-boswellic acid (AKBA) showed the strongest activity with an IC50 value of 0.88 µM against axenic amastigotes but was inactive against intracellular amastigotes in murine macrophages  相似文献   
254.
Benzene bisamides are promising building blocks for supramolecular nano-objects. Their functionality depends on morphology and surface properties. However, a direct link between surface properties and molecular structure itself is missing for this material class. Here, we investigate this interplay for two series of 1,4-benzene bisamides with symmetric and asymmetric peripheral substitution. We elucidated the crystal structures, determined the nano-object morphologies and derived the wetting behaviour of the preferentially exposed surfaces. The crystal structures were solved by combining single-crystal and powder X-ray diffraction, solid-state NMR spectroscopy and computational modelling. Bulky side groups, here t-butyl groups, serve as a structure-directing motif into a packing pattern, which favours the formation of thin platelets. The use of slim peripheral groups on both sides, in our case linear perfluorinated, alkyl chains, self-assemble the benzene bisamides into a second packing pattern which leads to ribbon-like nano-objects. For both packing types, the preferentially exposed surfaces consist of the ends of the peripheral groups. Asymmetric substitution with bulky and slim groups leads to an ordered alternating arrangement of the groups exposed to the surface. This allows the hydrophobicity of the surfaces to be gradually altered. We thus identified two leitmotifs for molecular packings of benzene bisamides providing the missing link between the molecular structure, the anisotropic morphologies and adjustable surface properties of the supramolecular nano-objects.  相似文献   
255.
Currently, energy storage technologies are becoming essential in the transition of replacing fossil fuels with more renewable electricity production means. Among storage technologies, redox flow batteries (RFBs) can represent a valid option due to their unique characteristic of decoupling energy storage from power output. To push RFBs further into the market, it is essential to include low-cost materials such as new generation membranes with low ohmic resistance, high transport selectivity, and long durability. This work proposes a composite membrane for vanadium RFBs and a method of preparation. The membrane was prepared starting from two polymers, meta-polybenzimidazole (6 μm) and porous polypropylene (30 μm), through a gluing approach by hot-pressing. In a vanadium RFB, the composite membrane exhibited a high energy efficiency (~84%) and discharge capacity (~90%) with a 99% capacity retention over 90 cycles at 120 mA·cm−2, exceeding commercial Nafion® NR212 (~82% efficiency, capacity drop from 90% to 40%) and Fumasep® FAP-450 (~76% efficiency, capacity drop from 80 to 65%).  相似文献   
256.
Droop, the decrease of efficiency with increased power density, became a major topic with InGaN LEDs, after its introduction in 2007. This paper provides insight into droop in localized center luminescence phosphors, exemplified here by Eu2+ doped materials. This topic is of increasing importance, as high brightness blue LEDs have reached outputs >1 W/mm2. The nonlinearities in phosphor quantum efficiency result in drive‐dependent color point shift and reduction of overall efficiency of phosphor converted white LEDs which utilize Eu2+ activated phosphors. The efficiency quenching can be traced back to two processes, well‐known in laser physics, excited state absorption or/and cross relaxation by Foerster/Dexter transfer. Both processes lead to reduction in phosphor efficiency, but they can be differentiated. Understanding the root cause of efficiency quenching opens ways to minimize the practical consequences. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
257.
We investigate the interatomic Coulombic decay (ICD) of neon dimers following photoionization with simultaneous excitation of the ionized atom (shakeup) in a multiparticle coincidence experiment. We find that, depending on the parity of the excited state, which determines whether ICD takes place via virtual dipole photon emission or overlap of the wave functions, the decay happens at different internuclear distances, illustrating that nuclear dynamics heavily influence the electronic decay in the neon dimer.  相似文献   
258.
We report on results of electrical resistivity and structural investigations on the cubic modification of FeGe under high pressure. The long-wavelength helical order (T(C) = 280 K) is suppressed at a critical pressure p(c) approximately 19 GPa. An anomaly at T(X)(p) and strong deviations from a Fermi-liquid behavior in a wide pressure range above p(c) suggest that the suppression of T(C) disagrees with the standard notion of a quantum critical phase transition. The metallic ground state persisting at high pressure can be described by band-structure calculations if zero-point motion is included. The shortest FeGe interatomic distance display discontinuous changes in the pressure dependence close to the T(C)(p) phase line.  相似文献   
259.
We report on an ytterbium-doped fiber based chirped-pulse amplification system delivering 100 microJ pulse energy at a repetition rate of 900 kHz, corresponding to an average power of 90 W. The emitted pulses are as short as 500 fs. To the best of our knowledge, this is the highest average power ever reported for high-energy femtosecond solid-state laser systems.  相似文献   
260.
The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号