首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   14篇
化学   138篇
物理学   9篇
  2024年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   3篇
  2013年   9篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   17篇
  2007年   16篇
  2006年   9篇
  2005年   15篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有147条查询结果,搜索用时 613 毫秒
31.
Blue–green luminescent terpyridine-containing PtII and ZnII complexes are reported. Equipped with lipophilic gallate units, which act as monodentate ancillary coordinating ligands and/or as anions, they display low-temperature mesomorphic properties (lamello-columnar and hexagonal mesophases for PtII and ZnII complexes, respectively). The mesomorphic properties were investigated by polarised optical microscopy, differential scanning calorimetry, thermogravimetric analysis and X-ray scattering of bulk materials and oriented thin films. The model of self-assembly into the lamello-columnar phase of the PtII complex has been described in detail. The optical properties of the complexes were investigated in the liquid and condensed liquid crystalline states, highlighting the delicate balance between the role of the metal in determining the type of excited state responsible for the emission, and the role of the ancillary ligand in driving intermolecular interactions for proper mesophase formation.  相似文献   
32.
ABSTRACT

The complexes between 14 different Be-salts of oxyacids from groups 13 to 16 with one and two molecules of H2 have been investigated by means of the MP2/aug-cc-pVTZ ab initio molecular orbital theory method, which was found to be reliable for the treatment of these weakly bound species. The main conclusion is that these Be-salts yield rather stable complexes with dihydrogen, with binding energies one order of magnitude larger than other typical H2 complexes reported in the literature. This strong binding is shown to be due to an enhancement of the electron-deficient nature of Be when attached to an oxyacid moiety, which depends more on the type of coordination of the central atom of the oxyacid moiety. The formation of these complexes is followed by a significant lengthening of the H2 internuclear distance and a concomitant red-shift of the H–H stretching frequency, which becomes a good indicator of the strength of the interaction. The charge shifting from the bonding region of the H2 molecule to the interboundary Be···H2 region is the physical phenomenon behind the stability of these complexes. Accordingly, the most important contributor to this stability is the inductive term, followed by the electrostatic interactions. The ability of Be to bind H2 is enhanced by the angular arrangement of the O–Be–O electron-acceptor group.  相似文献   
33.
Understanding the bonding in complexes X:BH3?nFn and X:BH3?nCln, for X=N2, HCN, LiCN, H2CNH, NF3, NH3 with n=0–3, is a challenging task. The trends in calculated binding energies cannot be explained in terms of any of the usual indexes, including π donation from the halogen lone pairs to the p(π) empty orbital on B, deformation energies, charge capacities, or LUMO energies, which are normally invoked to explain the higher Lewis acidity of BCl3 relative to BF3. The results of the high‐level G3B3 ab initio calculations reported in this study suggest that the interaction energies of these complexes are determined by a combination of at least three factors. These include the decrease in the electron‐accepting ability of B as a result of π donation by the halogen atom, the increase in the electron‐acceptor capacity of B due to deformation of the acid, and the large increase in the deformation energy of the acid with increasing halogen substitution. The dominant effects are those derived from the electronic effects of acid deformation. Deformation not only has direct energetic consequences, which are reflected in the large differences between dissociation (D0) and interaction (Eint) energies, but also leads to an enhancement of the intrinsic acidities of BH3?nFn and BH3?nCln moieties by lowering the LUMO energies to very different extents, consistent with the frontier orbital model of chemical reactivity. Although this lowering depends on both the number and the nature of the halogen substituents, binding energies do not systematically increase or decrease as the number of halogen atoms increases.  相似文献   
34.
35.
The existence of [HeNCH](2+) and [HeCNH](2+) is examined by reliable high-level ab initio methods. It is shown that both species are metastable with respect to the proton loss process, but the activation barriers are high enough to accommodate several resonant states. Their estimated lifetimes are practically infinite for v<3, implying that the attachment of alpha particles to HNC and HCN yields kinetically stable dications. This could be an important factor in the cyanide chemistry in interstellar and comet environments.  相似文献   
36.
The gas-phase reactions between ethylenediamine (en) and Cu(+) have been investigated by means of mass spectrometry techniques. The MIKE spectrum reveals that the adduct ions [Cu(+)(H(2)NCH(2)CH(2)NH(2))] spontaneously decompose by loosing H(2), NH(3) and HCu, the loss of hydrogen being clearly dominant. The spectra of the fully C-deuterated species show the loss of HD, NH(3) and CuD but no losses of H(2), D(2), NH(2)D, NHD(2), ND(3) or CuH are observed. This clearly excludes hydrogen exchange between the methylene and the amino groups as possible mechanisms for the loss of ammonia. Conversely, methylene hydrogen atoms are clearly involved in the loss of molecular hydrogen. The structures and bonding characteristics of the Cu(+)(en) complexes as well as the different stationary points of the corresponding potential energy surface (PES) have been theoretically studied by DFT calculations carried out at B3LYP/6-311+G(2df,2p)//B3LYP/6-311G(d,p) level. Based on the topology of this PES the most plausible mechanisms for the aforementioned unimolecular fragmentations are proposed. Our theoretical estimates indicate that Cu(+) strongly binds to en, by forming a chelated structure in which Cu(+) is bridging between both amino groups. The binding energy is quite high (84 kcal mol(-1)), but also the products of the unimolecular decomposition of Cu(+)(en) complexes are strongly bound Cu(+)-complexes.  相似文献   
37.
38.
39.
The reactivity of disulfide and diselenide derivatives towards F? and CN? nucleophiles has been investigated by means of B3PW91/6‐311+G(2df,p) calculations. This theoretical survey shows that these processes, in contrast with the generally accepted view of disulfide and diselenide linkages, do not always lead to S? S or Se? Se bond cleavage. In fact, S? S or Se? Se bond fission is the most favorable process only when the substituents attached to the S or the Se atoms are not very electronegative. Highly electronegative substituents (X) strongly favor S? X bond fission. This significant difference in the observed reactivity patterns is directly related to the change in the nature of the LUMO orbital of the disulfide or diselenide derivative as the electronegativity of the substituents increases. For weakly electronegative substituents, the LUMO is a σ‐type S? S (or Se? Se) antibonding orbital, but as the electronegativity of the substituents increases the π‐type S? X antibonding orbital stabilizes and becomes the LUMO. The observed reactivity also changes with the nature of the nucleophile and with the S or Se atom that undergoes the nucleophilic attack in asymmetric disulfides and diselenides. The activation strain model provides interesting insights into these processes. There are significant similarities between the reactivity of disulfides and diselenides, although some dissimilarities are also observed, usually related to the different interaction energies between the fragments produced in the fragmentation process.  相似文献   
40.
The relative stability of the radicals that can be produced from amine–boranes and phosphine–boranes is investigated at the G3‐RAD level of theory. Aminyl ([RNH].:BH3) and phosphinyl ([RPH].:BH3) radicals are systematically more stable than the boryl analogues, [RNH2]:BH2. and [RPH2]:BH2.. Despite similar stability trends for [RNH].:BH3 and [RPH].:BH3 radicals with respect to boryl radicals, there are significant dissimilarities between amine– and phosphine–boranes. The homolytic bond dissociation energy of the N?H bond decreases upon association of the amines with BH3, whereas that of the P?H bond for phosphines increases. The stabilization of the free amine is much smaller than that of the corresponding aminyl radical, whereas for phosphines this is the other way around. The homolytic bond dissociation energy of the B?H bond of borane decreases upon complexation with both amines and phosphines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号