首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   14篇
化学   138篇
物理学   9篇
  2024年   1篇
  2022年   1篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   3篇
  2013年   9篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   17篇
  2007年   16篇
  2006年   9篇
  2005年   15篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有147条查询结果,搜索用时 187 毫秒
131.
The gas-phase reactions between Ca(2+) and thiourea are investigated by means of electrospray ionization/mass spectrometry experiments. The MS/MS spectra of [Ca(thiourea)](2+) complexes show the appearance of new doubly charged species formed by the loss of NH(3) and HNCS. Other intense peaks at m/z 43, 56, 60, 73, 76 and 98 are also observed, and assigned to monocations produced in different coulomb-explosion processes. The structures and bonding characteristics of the different stationary points of the [Ca(thiourea)](2+) potential energy surface (PES) were theoretically studied by DFT calculations carried out at B3LYP/cc-pWCVTZ level. The analysis of the topology of this PES permits to propose different mechanisms for the loss of ammonia and HNCS, and to identify, the m/z 43, 56, 60, 73, 76 and 98 peaks as H(2)NCNH(+), CaNH(2) (+), H(2)NCS(+), CaSH(+), thiourea(+) and CaNCS(+) ions respectively. There are significant dissimilarities between the reactivity of urea and thiourea, which are related to the lower ionization energy of the latter, and to the fact that thioenols are intrinsically more stable than enols with respect to the corresponding keto forms.  相似文献   
132.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been carried out to investigate the effect of a third polar near-neighbor on one-bond ((1)J(X)(-)(H) and (1h)J(H)(-)(Y)) and two-bond ((2h)J(X)(-)(Y)) spin-spin coupling constants in AH:XH:YH(3) complexes, where A and X are (19)F and (35)Cl and Y is either (15)N or (31)P. The changes in both one- and two-bond spin-spin coupling constants upon trimer formation indicate that the presence of a third molecule promotes proton transfer across the X-H-Y hydrogen bond. The proton-shared character of the X-H-Y hydrogen bond increases in the order XH:YH(3) < ClH:XH:YH(3) < FH:XH:YH(3). This order is also the order of decreasing shielding of the hydrogen-bonded proton and decreasing X-Y distance, and is consistent with the greater hydrogen-bonding ability of HF compared to HCl as the third molecule. For all complexes, the reduced X-H and X-Y spin-spin coupling constants ((1)K(X)(-)(H) and (2h)K(X)(-)(Y)) are positive, consistent with previous studies of complexes in which X and Y are second-period elements in hydrogen-bonded dimers. (1h)K(H)(-)(Y) is, as expected, negative in these complexes which have traditional hydrogen bonds, except for ClH:FH:NH(3) and FH:FH:NH(3). In these two complexes, the F-H-N hydrogen bond has sufficient proton-shared character to induce a change of sign in (1h)K(H)(-)(Y). The effects of trimer formation on spin-spin coupling constants are markedly greater in complexes in which NH(3) rather than PH(3) is the proton acceptor.  相似文献   
133.
134.
The gas-phase acidities of methylidynephosphine, HCtbond;P, ethylidynephosphine, CH(3)Ctbond;P, and ethylidynearsine, CH(3)Ctbond;As, have been measured by means of Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometry and calculated at the CCSD(T)/6-311+G(3df,2p)//QCISD/ 6-311+G(df,p) level of theory. An analysis of these results shows that, in contrast to the well-known fact that HCtbond;N is a stronger acid than CH(3)Ctbond;N, CH(3)Ctbond;P and CH(3)Ctbond;As are more acidic than HCtbond;P and HCtbond;As, respectively. The most important consequence of this unexpected effect is that while HCtbond;P and HCtbond;As are found to be weaker acids than HCtbond;N, the opposite trend is found for the corresponding methyl derivatives, the acidity of which increases as CH(3)Ctbond;N相似文献   
135.
Thin films of nonstoichiometric Heusler alloys Co2MnSbxSn1−x (x = 0.2; 0.4; 0.6; 0.8) have been grown by pulsed laser deposition (double-target/double beam configuration) on Si (1 0 0) substrates using a KrF excimer laser (λ = 248 nm, τ = 20 ns). The substrate temperature was held at 300 K in all experiments to prevent interface interdiffusion of the species. A comparison between the compositions of films and corresponding targets has been done through energy dispersive X-ray spectroscopy (EDS) analysis showing a very satisfactory match. Scanning electron microscopy (SEM) imaging served to investigate the morphology of the films in order to determine the size and density of droplets which may influence the optical data. Optical conductivity derived from reflectivity measurements shows absorption onsets close to 1 eV, which corresponds to the onset of valence-to-conduction transitions in the minority spin bands theoretically predicted. The values of the saturation magnetisation measured at 300 K on the quaternary alloys are very close to those of ternary ones for which either half-metallic properties or high spin polarisation were theoretically predicted.  相似文献   
136.
The characteristics of the intramolecular hydrogen bond (IMHB) for a series of 40 different enols of beta-diketones and their nitrogen counterparts have been systematically analyzed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level of theory. In some cases, two tautomers may exist which are interconnected by a hydrogen shift through the IMHB. In tautomer a the HB donor group (YH) is attached to the six-membered ring, while in tautomer b the HB acceptor (X) is the one that is attached to the six-membered ring. We found that changing an O to a N favors the a tautomer when the atom is endo and the contrary when it is exo, while the presence of a double bond favors the a tautomers. As expected, the OH group behaves as a better HB donor than the NH2 group and the C=NH group as a better HB acceptor than the C=O group, although the first effect clearly dominates. Accordingly, the expected IMHB strength follows the [donor, acceptor] trend: [OH, C=NH] > [OH, C=O] > [NH2, C=NH] > [NH2, C=O]. For all those compounds in which the functionality exhibiting the IMHB is unsaturated (I-type), the IMHB is much stronger than in their saturated counterparts (II-type). However, when the systems of the II-type subset, which are saturated, are constrained to have the HB donor and the HB acceptor lying in the same plane and at the same distance as in the corresponding unsaturated analogue, the IMHB is of similar or even larger strength. Hence, we conclude that, at least for this series of unsaturated compounds, the resonance-assisted hydrogen bond effect is not the primary reason behind the strength of their IMHBs, which is simply a consequence of the structure of the sigma-skeleton of the system that keeps the HB donor and the HB acceptor coplanar and closer to each other.  相似文献   
137.
New 1,3,4-thiadiazole, 5a-e, and 1,2,4-triazolecompounds 6a-c, containing a D,L-methionine moiety were synthesized by intramolecular cyclization of 1,4-disubstituted thiosemicarbazides 4a-e in acid and alkaline media, respectively. The potential antimicrobial effects of the synthesized compounds were investigated using the Staphylococcus aureus ATCC 25923, Bacillus antracis ATCC 8705, Bacillus cereus ATCC 10987, Sarcina lutea ATCC 9341 and Escherichia coli ATCC 25922 strains. The newly synthesized compounds exhibited promising activities against Bacillus antracis and Bacillus cereus.  相似文献   
138.
The effect of Ni(II), Cu(II) and Zn(II) association on the diketo/keto-enol tautomerism of thymine has been investigated through the use of B3LYP density functional theory calculations. Final energies were obtained at the B3LYP/6-311+G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. Ni(II) and Cu(II) lead to an oxidation of thymine which for Zn(ii) is only partial and catalyze the tautomerization process, this catalytic effect being much larger for Ni(2+) and Zn(2+) than for Cu(2+). One of the most significant consequences of the oxidation of the base is that the calculated BDE's are primarily dictated by the value of the second ionization potential of the metal, and therefore follow the sequence Cu(2+) > Ni(2+) > Zn(2+). Also importantly, metal dication association leads to a stabilization of the keto-enol tautomer, which becomes the most stable form upon interaction with Ni(2+) and Zn(2+). This stabilization enhancement is the consequence of three concomitant factors, namely, (i) a stronger interaction of the metal cation with the carbonyl oxygen, (ii) the interaction of the metal with the dehydrogenated ring nitrogen, (iii) an aromatization of the six-membered ring.  相似文献   
139.
The reactions of XSeSX, XSeSY, and YSeSX (X, Y = CH3, NH2, OH, F) with F? and CN? nucleophiles have been investigated by means of B3PW91/6‐311+G(2df,p) and G4 calculations. In systems where the two substituents are not identical (XSeSY), the more stable of the two possible isomers corresponds to those in which the most electronegative substituent is attached to Se. Nucleophilic attack takes place at Se, independent of the nature of the nucleophile, with the only exception being XSeSF (X = CH3, NH2, OH), in which case the attack occurs at S. In agreement with recent results for disulfide and diselenide linkages, the mechanisms leading to Se—S bond cleavage are not always the more favorable ones because for highly electronegative substituents the most favorable process is fission of the chalcogen‐substituent bond. These dissimilarities in the observed reactivity pattern as a function of the electronegativity of the substituents are due to the fact that the σ‐type Se—S antibonding orbital, which for low‐electronegative substituents is the lowest unnoccupied molecular orbital (LUMO), becomes strongly destabilized when the electronegativity of the substituent increases, and is replaced by an antibonding π‐type Se‐X (or S‐X) orbital. In contrast, however, with what has been found for disulfide and diselenide derivatives, the observed reactivity does not change with the nature of the nucleophile. The activation strain model provides interesting insight into these processes, showing that in most cases the activation barriers are the consequence of subtle differences in the strain or in the interaction energies. © 2013 Wiley Periodicals, Inc.  相似文献   
140.
The association of BeX2 (X: H, F, Cl) derivatives with azoles leads to a dramatic increase of their intrinsic acidity. Hence, whereas 1H‐tetrazole can be considered as a typical N base in the gas phase, the complex 1H‐tetrazole–BeCl2 is predicted to be, through the use of high‐level G4 ab initio calculations, a nitrogen acid stronger than perchloric acid. This acidity enhancement is due to a more favorable stabilization of the deprotonated species after the beryllium bond is formed, because the deprotonated anion is a much better electron donor than the neutral species. Consequently, this is a general phenomenon that should be observed for any Lewis base, including those in which the basic site is a hydroxy group, an amino group, a carbonyl group, an aromatic N atom, a second‐row atom, or the π system of unsaturated hydrocarbons. The consequence is that typical bases like aniline or formamide lead to BeX2 complexes that are stronger acids than phosphoric or chloric acids. Similarly, water, methanol, and SH2 become stronger acids than sulfuric acid, pyridine becomes a C acid almost as strong as acetic acid, and unsaturated hydrocarbons such as ethylene and acetylene become acids as strong as nitric and sulfuric acids, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号