首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   4篇
化学   232篇
晶体学   6篇
力学   13篇
数学   40篇
物理学   57篇
  2023年   8篇
  2022年   6篇
  2021年   11篇
  2020年   8篇
  2019年   6篇
  2018年   3篇
  2016年   6篇
  2015年   2篇
  2014年   9篇
  2013年   14篇
  2012年   30篇
  2011年   18篇
  2010年   8篇
  2009年   11篇
  2008年   20篇
  2007年   17篇
  2006年   18篇
  2005年   18篇
  2004年   11篇
  2003年   8篇
  2002年   11篇
  2001年   8篇
  2000年   8篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1989年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   4篇
  1968年   4篇
  1946年   1篇
  1944年   1篇
  1941年   2篇
  1940年   1篇
  1913年   1篇
  1897年   1篇
  1891年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
41.
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). PPV derivatives are highly susceptible to photo-oxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Degradation was monitored with UV-vis and FTIR spectroscopies. The results indicated that cast films were completely degraded in ca. 400 min, while LB took longer time, i.e. about four times the values for the cast films. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.  相似文献   
42.
Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp2)–C(sp3) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach.  相似文献   
43.
A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp2-hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C–C bonds.

A highly selective iron-catalyzed three-component dicarbofunctionalization of unactivated alkenes with alkyl halides and sp2-hybridized Grignard reagents is reported.  相似文献   
44.
This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers (when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-)(1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.  相似文献   
45.
Recent advances in the control of molecular engineering architectures have allowed unprecedented ability of molecular recognition in biosensing, with a promising impact for clinical diagnosis and environment control. The availability of large amounts of data from electrical, optical, or electrochemical measurements requires, however, sophisticated data treatment in order to optimize sensing performance. In this study, we show how an information visualization system based on projections, referred to as Projection Explorer (PEx), can be used to achieve high performance for biosensors made with nanostructured films containing immobilized antigens. As a proof of concept, various visualizations were obtained with impedance spectroscopy data from an array of sensors whose electrical response could be specific toward a given antibody (analyte) owing to molecular recognition processes. In addition to discussing the distinct methods for projection and normalization of the data, we demonstrate that an excellent distinction can be made between real samples tested positive for Chagas disease and Leishmaniasis, which could not be achieved with conventional statistical methods. Such high performance probably arose from the possibility of treating the data in the whole frequency range. Through a systematic analysis, it was inferred that Sammon's mapping with standardization to normalize the data gives the best results, where distinction could be made of blood serum samples containing 10(-7) mg/mL of the antibody. The method inherent in PEx and the procedures for analyzing the impedance data are entirely generic and can be extended to optimize any type of sensor or biosensor.  相似文献   
46.
The development of new methods and concepts to visualize massive amounts of data holds the promise to revolutionize the way scientific results are analyzed, especially when tasks such as classification and clustering are involved, as in the case of sensing and biosensing. In this paper we employ a suite of software tools, referred to as PEx-Sensors, through which projection techniques are used to analyze electrical impedance spectroscopy data in electronic tongues and related sensors. The possibility of treating high dimension datasets with PEx-Sensors is advantageous because the whole impedance vs. frequency curves obtained with various sensing units and for a variety of samples can be analyzed at once. It will be shown that non-linear projection techniques such as Sammon's Mapping or IDMAP provide higher distinction ability than linear methods for sensor arrays containing units capable of molecular recognition, apparently because these techniques are able to capture the cooperative response owing to specific interactions between the sensing unit material and the analyte. In addition to allowing for a higher sensitivity and selectivity, the use of PEx-Sensors permits the identification of the major contributors for the distinguishing ability of sensing units and of the optimized frequency range. The latter will be illustrated with sensing units made with layer-by-layer (LbL) films to detect phytic acid, whose capacitance data were visualized with Parallel Coordinates. Significantly, the implementation of PEx-Sensors was conceived so as to handle any type of sensor based on any type of principle of detection, representing therefore a generic platform for treating large amounts of data for sensors and biosensors.  相似文献   
47.
Steady state and laser flash photolysis (LFP) of a series of p-X-cumyl phenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(5): 1, X = Br; 2, X = H; 3, X = CH(3); 4, X = OCH(3)) and p-X-cumyl p-methoxyphenyl sulfides (4-X-C(6)H(4)C(CH(3))(2)SC(6)H(4)OCH(3): 5, X = H; 6, X = CH(3); 7, X = OCH(3)) has been carried out in the presence of N-methoxy phenanthridinium hexafluorophosphate (MeOP(+)PF(6)(-)) under nitrogen in MeCN. Steady state photolysis showed the formation of products deriving from the C-S bond cleavage in the radical cations 1(+?)-7(+?) (2-aryl-2-propanols and diaryl disulfides). Formation of 1(+?)-7(+?) was also demonstrated by LFP experiments evidencing the absorption bands of the radical cations 1(+?)-3(+?) (λ(max) = 530 nm) and 5(+?)-7(+?) (λ(max) = 570 nm) mainly localized in the arylsulfenyl group and radical cation 4(+?) (λ(max) = 410, 700 nm) probably mainly localized in the cumyl ring. The radical cations decayed by first-order kinetics with a process attributable to the C-S bond cleavage. On the basis of DFT calculations it has been suggested that the conformations most suitable for C-S bond cleavage in 1(+?)-4(+?) and 7(+?) are characterized by having the C-S bond almost collinear with the π system of the cumyl ring and by a significant charge and spin delocalization from the ArS ring to the cumyl ring. Such a delocalization is probably at the origin of the observation that the rates of C-S bond cleavage result in very little sensitivity to changes in the C-S bond dissociation free energy (BDFE). A quite large reorganization energy value (λ = 43.7 kcal mol(-1)) has been calculated for the C-S bond scission reaction in the radical cation. This value is much larger than that (λ = 12 kcal mol(-1)) found for the C-C bond cleavage in bicumyl radical cations, a reaction that also leads to cumyl carbocations.  相似文献   
48.
Biomimetic and enzymatic oxidations of benzyl sulfides and sulfoxides lead to products (sulfoxides or sulfones) different from those obtained with bona fide electron transfer oxidations (products of C---H and/or C---S bond cleavage), which suggests the operation of an oxygen transfer mechanism.  相似文献   
49.
High-pressure density data for cyclohexane + n-hexadecane mixtures at a wide temperature range was modeled with several classical equations of state (EOS) and correlative models. A modification for softening the co-volume and another for a volume scaling of the Peng–Robinson EOS (VS-PR) were proposed. The VS-PR model is able to correlate the pure component experimental data employing only five adjustable parameters, with root-mean-square deviation (RMSD) between calculated and experimental densities essentially within the experimental error. This result is superior to widely used approaches, i.e., a six parameter Tait model and six parameter volume translations (temperature and pressure dependent) for Peng–Robinson and Patel–Teja EOS. The VS-PR model also represents well the isobaric thermal expansion and the isothermal compressibility coefficients of the pure cyclohexane, a small naphthenic substance as well as a long chain n-alkane hydrocarbon, n-hexadecane. When modeling the mixture data, the use of VS-PR model of pure components along with the Redlich–Kister expansion, truncated at the first term, the density was correlated within a RMSD only 60% greater than the experimental error. The proposed model is able to accurately represent all the tested mixture data with a relatively small number of parameters.  相似文献   
50.
A simple, isocratic, high‐resolution and prompt HPLC‐PDA method was developed and validated for the simultaneous quantification of prilocaine (PCL) and lidocaine (LCL) hydrochlorides in in vitro buccal iontophoresis‐driven permeation studies. A reversed‐phase C18 column (250 mm x 4.6 mm, 3μm, 110Å) was used for the chromatographic separation. The mobile phase contained acetonitrile: 0.1M sodium phosphate buffer, pH 7.0 (1:1, v/v), plus 0.05% (v/v) diethylamine. The isocratic flow rate was set at 1 mL/min and the detection wavelength was 203 nm. PCL and LCL eluted in 8.9 min and 13 min, respectively, and the system suitability parameters varied within an acceptable range. The method was selective, sensitive, precise, accurate and robust, producing a linear plot at the concentration range of 0.25 to 10 µg/mL. The application of this method was demonstrated by a significant enhancement of the permeation of PCL and LCL with the application of iontophoresis (1 mA/cm2 per 1 h) through isolated porcine esophageal epithelium. The amount of the drug retained in the epithelium also increased with the application of an electrical current. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号