首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   14篇
  国内免费   6篇
化学   217篇
晶体学   2篇
力学   7篇
数学   23篇
物理学   36篇
  2023年   3篇
  2022年   5篇
  2021年   19篇
  2020年   32篇
  2019年   22篇
  2018年   9篇
  2017年   9篇
  2016年   25篇
  2015年   12篇
  2014年   18篇
  2013年   35篇
  2012年   24篇
  2011年   23篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   11篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有285条查询结果,搜索用时 312 毫秒
41.
This paper reports the design, synthesis, and characterization of a family of cyclic peptides that mimic protein quaternary structure through beta-sheet interactions. These peptides are 54-membered-ring macrocycles comprising an extended heptapeptide beta-strand, two Hao beta-strand mimics [JACS 2000, 122, 7654] joined by one additional alpha-amino acid, and two delta-linked ornithine beta-turn mimics [JACS 2003, 125, 876]. Peptide 3a, as the representative of these cyclic peptides, contains a heptapeptide sequence (TSFTYTS) adapted from the dimerization interface of protein NuG2 [PDB ID: 1mio]. 1H NMR studies of aqueous solutions of peptide 3a show a partially folded monomer in slow exchange with a strongly folded oligomer. NOE studies clearly show that the peptide self-associates through edge-to-edge beta-sheet dimerization. Pulsed-field gradient (PFG) NMR diffusion coefficient measurements and analytical ultracentrifugation (AUC) studies establish that the oligomer is a tetramer. Collectively, these experiments suggest a model in which cyclic peptide 3a oligomerizes to form a dimer of beta-sheet dimers. In this tetrameric beta-sheet sandwich, the macrocyclic peptide 3a is folded to form a beta-sheet, the beta-sheet is dimerized through edge-to-edge interactions, and this dimer is further dimerized through hydrophobic face-to-face interactions involving the Phe and Tyr groups. Further studies of peptides 3b-3n, which are homologues of peptide 3a with 1-6 variations in the heptapeptide sequence, elucidate the importance of the heptapeptide sequence in the folding and oligomerization of this family of cyclic peptides. Studies of peptides 3b-3g show that aromatic residues across from Hao improve folding of the peptide, while studies of peptides 3h-3n indicate that hydrophobic residues at positions R3 and R5 of the heptapeptide sequence are important in oligomerization.  相似文献   
42.
Alpha-galactosidase A hydrolyzes the terminal alpha-galactosyl moieties from glycolipids and glycoproteins in lysosomes. Mutations in α-galactosidase cause lysosomal accumulation of the glycosphingolipid, globotriaosylceramide, which leads to Fabry disease. Small-molecule chaperones that bind to mutant enzyme proteins and correct their misfolding and mistrafficking have emerged as a potential therapy for Fabry disease. We have synthesized a red fluorogenic substrate, resorufinyl α-d-galactopyranoside, for a new α-galactosidase enzyme assay. This assay can be measured continuously at lower pH values, without the addition of a stop solution, due to the relatively low pK a of resorufin (~6). In addition, the assay emits red fluorescence, which can significantly reduce interferences due to compound fluorescence and dust/lint as compared to blue fluorescence. Therefore, this new red fluorogenic substrate and the resulting enzyme assay can be used in high-throughput screening to identify small-molecule chaperones for Fabry disease. Zhen-Dan Shi and Omid Motabar contributed equally to this work  相似文献   
43.
Ternary blends of polypropylene/polycarbonate/poly(styrene-b-(ethylene-co-butylene)-b-styrene) (PP/PC/SEBS) with varying SEBS contents were produced via melt blending in a co-rotating twin-screw extruder. The phase morphology of the resulting ternary blends and its relationship with bending and impact behaviors were studied. Transmission optical microscopy (TOM) of the crack tip damage zone and scanning electron microscopy (SEM) of impact fractured surfaces were performed to characterize the fracture mechanism. With increasing SEBS content in the PP/PC/SEBS ternary blends, the number of PC/SEBS core-shell particles increased and the size of the core-shell particles enlarged. It was shown that with an SEBS content of 5%, the crack initiation resistance decreased and then was almost unchanged with further increase of SEBS content, while resistance to crack growth increased continuously with increasing of SEBS content. Preliminary analysis of the micromechanical deformation suggested that the high impact toughness observed for samples containing 20 and 30 wt% of SEBS could be attributed to cavitation of the rubbery shell and, consequently, shear yielding of the matrix. This plastic deformation absorbed a tremendous amount of energy. Due to low interfacial adhesion between PC particles and PP matrix in samples containing 5 and 10 wt% of SEBS, debonding occurred too early, so the occurrence of matrix shear yielding was delayed and resulted in premature interfacial failure and, hence, rapid crack propagation.  相似文献   
44.
In this paper, we prove the existence, uniqueness and the stability of solutions for some nonlinear functional-integral equations by using generalized Lipschitz condition. We prove a fixed point theorem to obtain the mentioned aims in Banach space X:= C([a, b],R). As application we study some Volterra integral equations with linear, nonlinear and singular kernel.  相似文献   
45.
We have synthesized epoxy nanocomposites with various percents of nanoalumina by using ultrasonic dispersion treatment. Scanning calorimetry studies revealed that the composition having 1% nanoalumina results in the highest value of cross-link density as evidenced by the glass transition temperature (T g). Thermal degradation of the systems consisting of diglycidyl ether bisphenol A (DGEBA)/1,3-Poropane diamine and with 1% and without nanoalumina were studied by thermogravimetry analysis to determine the reaction mechanism in air. The obtained results indicated that a relatively low concentration of nanoalumina led to an impressive improvement of thermal stability of epoxy resin. The Coats?CRedfern, Van Krevelen, Horowitz?CMetzger, and Criado methods were utilized to find the solid state thermal degradation mechanism. Analysis of our experimental results suggests that the reaction mechanism is depending on the applied thermal history. For the nanocomposite, the mechanism was recognized to be one-dimensional diffusion (D1) reaction at low heating rates and it changes to be a random nucleation process with one nucleus on the individual particle (F1) at high heating speeds. The results also indicated that the degradation mechanism of organic phase is influenced by the presence of inorganic nanofiller.  相似文献   
46.
In this work, monodisperse nanoparticles and nanorods of lanthanum hydroxide was synthesized from the reaction of lanthanum(III) nitrate and sodium hydroxide by sonochemical method. The effect of some of the parameters such as feeding rate of precursors, different solvents of reaction, time of sonication, and various surfactants on the particle size and morphology of products was studied. The as-prepared products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy.  相似文献   
47.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
48.
Journal of Thermal Analysis and Calorimetry - The low-temperature combustion (LTC) concept presents solutions for simultaneous reduction in pollution and fuel consumption of internal combustion...  相似文献   
49.
Azobenzene derivatives due to their photo- and electroactive properties are an important group of compounds finding applications in diverse fields. Due to the possibility of controlling the trans–cis isomerization, azo-bearing structures are ideal building blocks for development of e.g. nanomaterials, smart polymers, molecular containers, photoswitches, and sensors. Important role play also macrocyclic compounds well known for their interesting binding properties. In this article selected macrocyclic compounds bearing azo group(s) are comprehensively described. Here, the relationship between compounds’ structure and their properties (as e.g. ability to guest complexation, supramolecular structure formation, switching and motion) is reviewed.  相似文献   
50.
Metal oxo clusters and metal oxides assemble and precipitate from water in processes that depend on pH, temperature, and concentration. Other parameters that influence the structure, composition, and nuclearity of “molecular” and bulk metal oxides are poorly understood, and have thus not been exploited. Herein, we show that Bi3+ drives the formation of aqueous Fe3+ clusters, usurping the role of pH. We isolated and structurally characterized a Bi/Fe cluster, Fe3BiO2(CCl3COO)8(THF)(H2O)2, and demonstrated its conversion into an iron Keggin ion capped by six Bi3+ irons ( Bi6Fe13 ). The reaction pathway was documented by X‐ray scattering and mass spectrometry. Opposing the expected trend, increased cluster nuclearity required a pH decrease instead of a pH increase. We attribute this anomalous behavior of Bi/Fe(aq) solutions to Bi3+, which drives hydrolysis and condensation. Likewise, Bi3+ stabilizes metal oxo clusters and metal oxides in strongly acidic conditions, which is important in applications such as water oxidation for energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号