首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1928篇
  免费   83篇
  国内免费   11篇
化学   1462篇
晶体学   44篇
力学   53篇
综合类   1篇
数学   152篇
物理学   310篇
  2023年   23篇
  2022年   84篇
  2021年   88篇
  2020年   74篇
  2019年   66篇
  2018年   47篇
  2017年   41篇
  2016年   77篇
  2015年   43篇
  2014年   82篇
  2013年   122篇
  2012年   163篇
  2011年   165篇
  2010年   96篇
  2009年   72篇
  2008年   102篇
  2007年   104篇
  2006年   79篇
  2005年   73篇
  2004年   49篇
  2003年   60篇
  2002年   50篇
  2001年   13篇
  2000年   22篇
  1999年   18篇
  1998年   13篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   12篇
  1991年   11篇
  1990年   6篇
  1989年   12篇
  1988年   5篇
  1987年   11篇
  1986年   3篇
  1985年   8篇
  1984年   11篇
  1982年   3篇
  1981年   7篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   3篇
  1976年   3篇
  1975年   5篇
  1973年   6篇
  1971年   3篇
排序方式: 共有2022条查询结果,搜索用时 15 毫秒
61.
This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.  相似文献   
62.
Background: Curcumin is a natural product obtained from the rhizome of Curcuma longa. Rosemary (Rosmarinus officinalis) is a medicinal and aromatic plant that is widely spread in the Mediterranean region. Both Curcumin and rosemary essential oil are natural products of high medicinal and pharmacological significance. The hepatoprotective effect of both natural products is well-established; however, the mechanism of such action is not fully understood. Thus, this study is an attempt to explore the hepatoprotective mechanism of action of these remedies through their effect on MEK and ERK proteins. Furthermore, the effect of rosemary essential oil on the plasma concentration of curcumin has been scrutinized. Materials and methods: The major constituents of REO were qualitatively and quantitatively determined by GC/MS and GC/FID, respectively. Curcumin and rosemary essential oil were given to mice in a pre-treatment model, followed by induction of liver injury through a high dose of paracetamol. Serum liver enzymes, lipid peroxidation, antioxidant activities, the inflammatory and apoptotic biomarkers, as well as the MEK and ERK portions, were verified. The plasma levels of curcumin were determined in the presence and absence of rosemary essential oil. Results: The major constituents of REO were 1,8-cineole (51.52%), camphor (10.52%), and α-pinene (8.41%). The results revealed a superior hepatoprotective activity of the combination when compared to each natural product alone, as demonstrated by the lowered liver enzymes, lipid peroxidation, mitigated inflammatory and apoptotic biomarkers, and enhanced antioxidant activities. Furthermore, the combination induced the overexpression of MEK and ERK proteins, providing evidence for the involvement of this cascade in the hepatoprotective activity of such natural products. The administration of rosemary essential oil with curcumin enhanced the curcuminoid plasma level. Conclusion: The co-administration of both curcumin and rosemary essential oil together enhanced both their hepatoprotective activity and the level of curcumin in plasma, indicating a synergistic activity between both natural products.  相似文献   
63.
We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14–629% in the roots, 15–2964% in the stems, and 26–4020% in the leaves; the accumulation of Cu was 18–2757% in the roots, 15–4506% in the stems, and 23–4605% in the leaves; and the accumulation of Pb was 13–4122% in the roots, 21–3588% in the stems, and 21–4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.  相似文献   
64.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.  相似文献   
65.
A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 μM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.  相似文献   
66.
The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.  相似文献   
67.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   
68.
69.
Journal of Solid State Electrochemistry - Manganese phosphate (Mn3(PO4)2) particles decorated polyaniline (PANI) have been proposed as a promising electrode material for supercapacitors. Mn3(PO4)2...  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号