排序方式: 共有82条查询结果,搜索用时 0 毫秒
81.
The extended exotic planar model for a charged particle is constructed. It includes a Chern–Simons-like term for a dynamical electric field, but produces usual equations of motion for the particle in background constant uniform electric and magnetic fields. The electric Chern–Simons term is responsible for the noncommutativity of the boost generators in the 10-dimensional enlarged exotic Galilei symmetry algebra of the extended system. The model admits two reduction schemes by the integrals of motion, one of which reproduces the usual formulation for the charged particle in external constant electric and magnetic fields with associated field-deformed Galilei symmetry, whose commuting boost generators are identified with the nonlocal in time Noether charges reduced on-shell. Another reduction scheme, in which electric field transmutes into the commuting space translation generators, extracts from the model a free particle on the noncommutative plane described by the twofold centrally extended Galilei group of the nonrelativistic anyons. 相似文献
82.
Victor I. Afonso Gonzalo J. Olmo Emanuele Orazi Diego Rubiera-Garcia 《The European Physical Journal C - Particles and Fields》2018,78(10):866
We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into general relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born–Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born–Infeld gravity we find, via this correspondence, a Born–Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR. 相似文献