首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2953篇
  免费   142篇
化学   1819篇
晶体学   21篇
力学   47篇
数学   603篇
物理学   605篇
  2021年   40篇
  2020年   60篇
  2019年   43篇
  2018年   50篇
  2017年   63篇
  2016年   154篇
  2015年   136篇
  2014年   121篇
  2013年   234篇
  2012年   155篇
  2011年   200篇
  2010年   128篇
  2009年   97篇
  2008年   101篇
  2007年   73篇
  2006年   66篇
  2005年   32篇
  2004年   41篇
  2003年   31篇
  2002年   28篇
  2001年   24篇
  2000年   31篇
  1999年   28篇
  1998年   27篇
  1997年   24篇
  1990年   25篇
  1988年   22篇
  1987年   22篇
  1986年   22篇
  1985年   30篇
  1984年   30篇
  1983年   26篇
  1982年   28篇
  1981年   22篇
  1978年   25篇
  1977年   22篇
  1976年   23篇
  1973年   22篇
  1969年   22篇
  1968年   40篇
  1966年   23篇
  1965年   42篇
  1964年   45篇
  1963年   27篇
  1962年   38篇
  1961年   36篇
  1960年   32篇
  1959年   29篇
  1958年   23篇
  1957年   25篇
排序方式: 共有3095条查询结果,搜索用时 31 毫秒
121.
Infinite tubular assemblies based on calix[4]arenes can be easily constructed using cation–π interactions of silver triflate with preorganised aromatic subunits (1,3-alternate or pinched cone conformations). X-ray crystallographic analysis shows that the overall self-assembly is held together by triflate anions playing the role of the bridges between the individual complexes.  相似文献   
122.
The critical temperature and mechanism functions for thermal decomposition of ε-CL-20, RS-ε-CL-20, α-CL-20, ε-CL-20/C4, and RS-ε-CL-20/C4 were evaluated based on non-isothermal TG data. A two-step mechanism has been found for thermal decomposition of α-CL-20, ε-CL-20/C4, and RS-ε-CL-20/C4, where the initial step is partly controlled by crystal structure of CL-20. The more reasonable mean activation energies could be obtained after peak separation for each individual steps. In fact, the activation energy for the post integrated process is almost equivalent with that of the second step, indicating that the total activation energy at the main decomposition process is dominated by thermolysis of CL-20 molecular. Besides, it has been found that the decomposition of C4 matrix does not affect the decomposition of normal ε-CL-20, resulting in identical activation energy and reaction model. However, the interaction between the C4 matrix and RS-ε-CL-20 is significant especially at the initial stage, where the activation energy of RS-ε-CL-20/C4 was overestimated before peak separation, while the activation energy for the second step due to thermolysis of CL-20 molecular is underestimated. The first decomposition step for α-CL-20, ε-CL-20/C4, and RS-ε-CL-20/C4 could be considered as autocatalytic process (AC model), whereas the second as JMA model, which is also applicable to that of pure ε-CL-20 and RS-ε-CL-20. Moreover, The critical temperatures of thermal explosion (T b) are obtained as 205.6, 205.5, 209.4, 214.4, and 227.5 °C for α-CL-20, ε-CL-20, RS-ε-CL-20, ε-CL-20/C4, and RS-ε-CL-20/C4, respectively. It proves that the C4 matrix could stabilize ε-CL-20 while the crystal form of CL-20 has little effect on its thermal stability.  相似文献   
123.
The applicability of the Kissinger equation for the evaluation of apparent activation energy corresponding to glass transition kinetics is examined. Theoretically simulated data based on the generally accepted Tool–Narayanaswamy–Moynihan model were used to represent relevant cases of structural relaxation behavior. The values of the apparent activation energy determined by the Kissinger equation were, despite the linearity of the dependencies, in major disagreement with the original values of ?h * used for the simulation of the source data. Furthermore, a large dependence of the ?h Kis * evaluation (performed using the Kissinger equation) on the thermal history of the glass was found. The latter represents an unacceptable systematic error in the methodology, implying the incorrectness of the Kissinger equation usage for the evaluation of “glass transition activation energy”. This study addresses the currently widespread (incorrect) usage of the Kissinger equation for the above-mentioned purpose.  相似文献   
124.
Ozone adsorption and decomposition on metal oxides is of wide interest in technology and in atmospheric chemistry. Here, ozone‐adsorption‐induced band bending is observed on Ti‐ and Fe‐oxide model surfaces under dry and humid conditions. Photoelectron spectroscopic studies indicate the effect of charge transfer to O3, which limits the surface coverage of the precursor to decomposition reactions. This is also consistent with the negative pressure dependence observed in previous studies. These results contribute to our fundamental understanding of ozone adsorption and decomposition mechanisms on metal oxides of environmental and technological relevance.  相似文献   
125.
Ultrahigh-performance liquid chromatography coupled with high-mass-accuracy tandem mass spectrometry (UHPLC–MS–MS) has been used for elucidation of the structures of oxidation products of atorvastatin (AT), one of the most popular commercially available drugs. The purpose of the study was identification of AT metabolites in rat hepatocytes and comparison with electrochemically generated oxidation products. AT was incubated with rat hepatocytes for 24 h. Electrochemical oxidation of AT was performed by use of a three-electrode off-line system with a glassy carbon working electrode. Three supporting electrolytes (0.1 mol L?1 H2SO4, 0.1 mol L?1 HCl, and 0.1 mol L?1 NaCl) were tested, and dependence on pH was also investigated. AT undergoes oxidation by a single irreversible process at approximately +1.0 V vs. Ag/AgCl electrode. The results obtained revealed a simple and relatively fast way of determining the type of oxidation and its position, on the basis of characteristic neutral losses (NLs) and fragment ions. Unfortunately, different products were obtained by electrochemical oxidation and biotransformation of AT. High-mass-accuracy measurement combined with different UHPLC–MS–MS scans, for example reconstructed ion-current chromatograms, constant neutral loss chromatograms, or exact mass filtering, enable rapid identification of drug-related compounds. β-Oxidation, aromatic hydroxylation of the phenylaminocarbonyl group, sulfation, AT lactone and glycol formation were observed in rat biotransformation samples. In contrast, a variety of oxidation reactions on the conjugated skeleton of isopropyl substituent of AT were identified as products of electrolysis.
Figure
Chemical structure of atorvastatin (AT) composed of four main parts assigned as A, B, C and D including the list of identified oxidation reactions for both electrochemical and in vitro experiments  相似文献   
126.
Enzyme assays of β-N-acetylhexosaminidase from Aspergillus oryzae using capillary electrophoresis in the offline and online setup have been developed. The pH value and concentration of the borate-based background electrolyte were optimized in order to achieve baseline separation of N,N′,N″-triacetylchitotriose, N,N′-diacetylchitobiose, and N-acetyl-d-glucosamine. The optimized method using 25 mM tetraborate buffer, pH 10.0, was evaluated in terms of repeatability, limits of detection, quantification, and linearity. The method was successfully applied to the offline enzyme assay of β-N-acetylhexosaminidase, which was demonstrated by monitoring the hydrolysis of N,N′,N″-triacetylchitotriose. The presented method was also utilized to study the pH dependence of enzyme activity. An online assay with N,N′-diacetylchitobiose as a substrate was developed using the Transverse Diffusion of Laminar Flow Profiles model to optimize the injection sequence and in-capillary mixing of substrate and enzyme plugs. The experimental results were in good agreement with predictions of the model. The online assay was successfully used to observe the inhibition effect of N,N′-dimethylformamide on the activity of β-N-acetylhexosaminidase with nanoliter volumes of reagents used per run and a high degree of automation. After adjustment of background electrolyte pH, an online assay with N,N′,N″-triacetylchitotriose as a substrate was also performed.
Figure
Electropherograms resulting from online enzyme assays of β-N-acetylhexosaminidase for chitobiose as a substrate with 10-min (red line), 5-min (blue line) and 0-min (black line) reaction time. Peak identification: 1 chitobiose, 2 N-acetylglucosamine  相似文献   
127.
Bead Cellulose     
Abstract

A new polymeric structure has been developed which fills a blank in available hydrophilic supports for separation processes.

Bead cellulose is a pure regenerated cellulose which is prepared by a modified viscose procedure. It is characterized by a regular spherical shape of individual particles, controlled porosity, accessibility for high molecular weight substances, high deformation stability and adequate chemical reactivity.

Diverse uses of this new material are described, viz., physical supports, chromatographic materials, dried preparations and various derivatives with different functions like ion exchangers, metal chelating adsorbents, chemisorbents, affinity adsorbents, immobilized enzymes. Bead cellulose can also be coupled with various active substances giving composite systems.  相似文献   
128.
The method employing molecularly imprinted polymers for the extraction and clean up of endocrine‐disrupting compounds (estrogens, bisphenol A, and alkylphenols) from water and sediment is described. The identical extraction/clean‐up and LC‐MS/MS condition were used for the analysis of both types of samples. The method showed high recoveries ranging from 90 to 99% with excellent precision (intrabatch: 3.6–9.3%; interbatch: 5.6–11.4% for water; intrabatch: 4.3–8.5%; interbatch: 6.1–9.6% for sediment). The LOD was in the range of 0.7–1.9 ng/L and 0.3–0.6 ng/g for water and sediment, respectively. Overall extraction on molecularly imprinted polymers substantially enhanced sample clean‐up. The difference in efficiency of clean‐up was particularly pronounced when a large sample volume/weight was extracted and analyzed. Finally, the method was successfully applied for the analysis of 20 water and sediment samples.  相似文献   
129.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   
130.
HPLC method enabling chiral separation and determination of citalopram (CIT), a widely used antidepressant, and its synthetic precursor citadiol in one analysis was developed and validated. Moreover, supercritical fluid chromatography was also tested and was proved to be less effective for this separation purpose. The optimized HPLC system was composed of Chiralcel OD-H column and n-hexane/propane-2-ol/triethylamine 96/4/0.1 (v/v/v) as mobile phase, column temperature 25 °C, flow rate 1.0 mL min?1, UV detection at 250 nm. The effects of amount of propane-2-ol, triethylamine addition, and temperature on enantioselectivity and resolution of the enantiomers were evaluated. The method was found to be suitable for determination of the enantiomeric purity of CIT in bulk drugs. Enantiomers of CIT were determined in two commercially available pharmaceuticals.  相似文献   
[首页] « 上一页 [8] [9] [10] [11] [12] 13 [14] [15] [16] [17] [18] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号