首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   3篇
力学   1篇
物理学   12篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1999年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有16条查询结果,搜索用时 5 毫秒
11.
We study velocity statistics of electrostatically driven granular gases. For two different experiments, (i) nonmagnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(upsilon) approximately exp(-/upsilon/). This behavior is consistent with the kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.  相似文献   
12.
13.
Velocity distributions in a vibrated granular monolayer are investigated experimentally. Non-Gaussian velocity distributions are observed at low vibration amplitudes but cross over smoothly to Gaussian distributions as the amplitude is increased. Cross-correlations between fluctuations in density and temperature are present only when the velocity distributions are strongly non-Gaussian. Confining the expansion of the granular layer results in non-Gaussian velocity distributions that persist to high vibration amplitudes.  相似文献   
14.
15.
We present measurements showing the presence and the absence of molecular chaos in a two-layer vertically vibrated granular media where a plate drives a horizontal layer of massive grains, which, in turn, drives a second horizontal layer of lighter grains above the first. In the first layer driven by the plate, the velocities are spatially correlated. In the second layer, we find uncorrelated velocities consistent with the presence of molecular chaos. In this experiment, energy injection that is randomized in both space and time throughout the shaking cycle is necessary for observing molecular chaos and "kinetic theory"-like behavior. At higher densities, excluded volume effects force velocity correlations in the system which is no longer "gaslike" in behavior.  相似文献   
16.
An experimental and theoretical study of the absolute value of the one-bond spin-spin coupling constant |(1)J(Si,H)| in SiH(n)Cl(4-n) (n = 0-4) dissolved in THF-d(8) is presented. We found |(1)J(Si,H)| to increase with an increasing number of chlorine substituents, and the quantitative changes were found to differ from the values previously reported for the same compounds dissolved in cyclohexane-d(12). We also report on the variations in |(1)J(Si,H)| as a function of temperature, which we found to be linearly temperature dependent for the chlorine-substituted silanes and temperature independent for SiH(4). Furthermore, the temperature dependence of |(1)J(Si,H)| varied between the different chlorosilanes. Solvent-solute interactions were studied by quantum chemical DFT calculations. The variations in chloro-silane bond lengths upon adduct formation and the different adduct interaction energies may explain the temperature dependences of the coupling constants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号