首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   7篇
化学   83篇
晶体学   2篇
力学   1篇
数学   7篇
物理学   38篇
  2023年   1篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1976年   4篇
  1975年   1篇
  1969年   1篇
排序方式: 共有131条查询结果,搜索用时 15 毫秒
101.
Transient absorption spectra and decay profiles of HO2 have been measured using cw near-IR two-tone frequency modulation absorption spectroscopy at 297 K and 50 Torr in diluent of N2 in the presence of water. From the depletion of the HO2 absorption peak area following the addition of water, the equilibrium constant of the reaction HO2 + H2O <--> HO2-H2O was determined to be K2 = (5.2 +/- 3.2) x 10(-19) cm3 molecule(-1) at 297 K. Substituting K2 into the water dependence of the HO2 decay rate, the rate coefficient of the reaction HO2 + HO2-H2O was estimated to be (1.5 +/- 0.1) x 10(-11) cm3 molecule(-1) s(-1) at 297 K and 50 Torr with N2 as the diluent. This reaction is much faster than the HO2 self-reaction without water. It is suggested that the apparent rate of the HO2 self-reaction is enhanced by the formation of the HO2-H2O complex and its subsequent reaction. Results are discussed with respect to the kinetics and atmospheric chemistry of the HO2-H2O complex. At 297 K and 50% humidity, the concentration ratio of [HO2-H2O]/[HO2] was estimated from the value of K2 to be 0.19 +/- 0.11.  相似文献   
102.
A two-dimensional hexagonally close-packed (2D-HCP) array of ferritin molecules with a nanoparticle core was fabricated directly on a carbonaceous solid substrate by genetically modifying the outer surface of the ferritin with carbonaceous materials-specific binding peptides. The displayed peptides endowed ferritins with a specific protein-substrate interaction and masked the strong nonspecific interaction. The specific interaction was weak enough to allow ferritins to be rearranged as well as an attractive protein-protein interaction that could be adjusted by selecting the buffer conditions. This method not only produced 2D-HCP arrays of ferritin but also 2D-ordered arrays of independent inorganic nanoparticles after protein elimination that can be applied to floating gate memories.  相似文献   
103.
Uniformly sized functionalized macroporous polymer beads were prepared by either a classical copolymerization method or recently reported in situ surface modification method utilizing chiral methacrylamide as a functional modifier. To evaluate conformational and/or specific differences in their surface chiral functionality, we applied chromatographic evaluation techniques. The prepared modified beads were utilized as chiral stationary phase in high-performance liquid chromatography (HPLC). Those prepared by the in situ surface modification method tended to show higher chiral recognition ability than those by the classical copolymerization method, even if the equivalent amount of the chiral functional group was involved within polymer beads. Detailed chromatographic studies exhibited the in situ surface modification method could lead to polymeric methacrylamide functionality on the surface within relatively large pore size regions of the macroporous polymer beads, while the classical copolymerization method tended to form less polymeric surface functionality. The difference in the chiral surface functionality on both of macroporous polymer beads afforded drastic change in chromatographic chiral recognition ability. Complete resolution of a drug, thalidomide could be achieved on the chiral stationary phase with the polymeric chiral surface functionality, while no resolution was found on that with the monomeric one even if the same chiral methacrylamide was used as a modifier to prepare the chiral stationary phases. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2747–2757, 1997  相似文献   
104.
105.
A circularly polarized luminescence (CPL) material has been created by polymer–polymer complexation between a helix‐forming polysaccharide, schizophyllan (SPG), and a meta‐phenylene‐linked polyfluorene derivative (mPFS). Computational modeling revealed that mPFS can adopt a helical structure although a conventional polyfluorene derivative with a para‐phenylene linkage tends to enjoy a rigid rodlike conformation. Our detailed experimental examination showed that mPFS forms a chiral nanowire complex through cohelix formation with SPG. We have found, as expected, that this cohelical complex emits highly efficient CPL even in an aqueous solution. The appearance of the high CPL property is due to 1) a high quantum yield of the fluorene unit and 2) immobilization of the helically twisted conformation of mPFS in an isolated manner through cohelix formation with SPG. One can propose, therefore, that the SPG/mPFS complex acts as a new high‐performance CPL material with a solvent‐dispersible nanowire structure.  相似文献   
106.
Disubstituted acetylene monomers [1,2‐diphenylacetylenes (DPAs: DPA‐pC1, DPA‐mC1, DPA‐pC8); 1‐phenyl‐2‐hexylacetylene (PHA‐pC1)] are tested for asymmetric polymerization in chiral monoterpenes used as solvents and compared with the corresponding monosubstituted acetylene monomer [1‐phenylacetylene (PA‐pC1)]. DPA‐pC1 containing a trimethylsilyl group in the para‐position of the phenyl ring produces an optically active polymer with a large Cotton effect, despite the absence of a stereogenic center. The polymer sample obtained by polymerization in 87% ee (–)‐α‐pinene shows the strongest CD signal (gCD value at 385 nm: ∼3.2 × 10−3). The Cotton bands of the polymers obtained in (–)‐ and (+)‐α‐pinenes show the opposite sign in the CD signals. Theoretical calculations show that only the cis‐cisoid model adopts a helical conformation. A time‐correlated single photon counting experiment shows that the emission of the chiral polymer originates from a virtually single excited species with a 98% component fraction. This polymer solution does not show any significant decrease in gCD value over a wide temperature range of 20 to 80 °C. No noticeable decrease in the gCD value is detected when the polymer solution is kept at relatively low temperatures for a prolonged period (35 d). In contrast, the other polymers show no CD signal.

  相似文献   

107.
Poly(benzyl ether) dendrimers with o-, m-, and p-isomers of dialkoxybenzene at their focal points [o-, m-, and p-(Gn)2Ar], having generation numbers (n) of 0–3, were synthesized. 1H NMR pulse relaxation times (T1) of the exterior MeO groups of o- and m-(Gn)2Ar (n = 0–3) all remained in the range of 0.92–1.43 s. In sharp contrast, an exceptionally short T1 value (0.23 s) was observed for p-(G3)2Ar. Although their absorption spectral profiles were slightly different from one another, an essential difference was observed for their fluorescence properties. When the generation number was increased, the fluorescence efficiency of o-(Gn)2Ar increased, but that of p-(Gn)2Ar decreased, whereas m-(Gn)2Ar exhibited a relatively small change in the fluorescence efficiency. Fluorescence depolarization studies showed a highly efficient intramolecular energy migration in p-(G3)2Ar as compared with o-(G3)2Ar and m-(G3)2Ar. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3524–3530, 2003  相似文献   
108.
Because ammonia is one of the most promising candidates for energy carrier in the future, various applications of ammonia as a fuel are currently considered. One medium for utilizing ammonia is by introducing it to coal-fired boilers. To the best of our knowledge, this paper is the first to report the fundamental mechanism of the flame propagation phenomenon for pulverized coal/ammonia co-combustion. The effects of the equivalence ratio of the ammonia-oxidizer mixture on the flame propagation velocity of pulverized coal/ammonia co-combustion in turbulent fields were clarified by the experiments employing a unique fan-stirred constant volume chamber. The flame propagation velocities of pulverized coal/ammonia co-combustion, pure ammonia combustion, and pure pulverized coal combustion were compared. As expected, the flame propagation velocity of pulverized coal/ammonia was higher than that of the pure pulverized coal combustion for all conditions. However, the comparison of the flame propagation velocities of pulverized coal/ammonia co-combustion and that of the pure ammonia combustion, revealed that whether the flame propagation of the pulverized coal/ammonia was higher than that of the pure ammonia combustion was dependent on the equivalence ratio of the ammonia-oxidizer. This unique feature was explained by a mechanism including three competing effects proposed by the authors. In the ammonia lean condition, the positive effects, which are the strong radiation from the luminous flame and the increment of local equivalence ratio by the addition of volatile matter, are larger than the negative effect, which is the heat absorption by coal particles in preheat zone. In the ammonia rich condition, the effect of an increment of the local equivalence ratio by the addition of volatile matter turns into a negative effect. Consequently, the negative effects overcome the positive effect in the ammonia rich condition resulting in a lower flame propagation velocity of pulverized coal/ammonia co-combustion.  相似文献   
109.
This study aims to clarify the effect of fuel ratio of coal on the turbulent flame speed of ammonia/coal particle cloud co-combustion at atmospheric pressure under various turbulence intensities. High-fuel-ratio coals are not usually used in coal-fired thermal power plants because of their low flame stability. The expectation is that ammonia as a hydrogen-energy carrier would improve the ignition capability of coal particles in co-combustion. Experiments on spherical turbulent flame propagation of co-combustion were conducted for various coal types under various turbulence intensities, using the unique experimental apparatus developed for the co-combustion. Experimental results show that the flame speed of co-combustion with a low equivalence ratio of ammonia/oxidizer mixture for bituminous coal case was found to be three times faster than that of pure coal combustion and two times faster than that of pure ammonia combustion. On the other hand, the flame speed of co-combustion for the highest-fuel-ratio coal case is lower than that of the pure ammonia combustion case, although the flame propagation can be sustained due to the ammonia mixing. To explain the difference of tendencies depending on the fuel ratio of coal, a flame propagation mechanism of ammonia/coal particle cloud co-combustion was proposed. Two positive effects are the increases of local equivalence ratio and the increases of radiation heat flux, which increases the flame speed. In opposite, a negative effect is the heat sink effect that decreases the flame speed. The two positive effects on the flame speed of co-combustion overwhelm a negative effect for bituminous coal case, while the negative effect overcomes both positive effects for the highest-fuel-ratio coal case. The findings of the study can contribute to the reduction of solid fuel costs when the ammonia is introduced as CO2 free energy carrier and can improve the energy security through the utilization of high-fuel-ratio coals.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号