首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4511篇
  免费   101篇
  国内免费   20篇
化学   3198篇
晶体学   46篇
力学   106篇
数学   217篇
物理学   1065篇
  2022年   24篇
  2021年   45篇
  2020年   41篇
  2019年   46篇
  2018年   34篇
  2017年   33篇
  2016年   76篇
  2015年   76篇
  2014年   91篇
  2013年   203篇
  2012年   229篇
  2011年   272篇
  2010年   135篇
  2009年   123篇
  2008年   217篇
  2007年   212篇
  2006年   241篇
  2005年   213篇
  2004年   220篇
  2003年   197篇
  2002年   200篇
  2001年   133篇
  2000年   116篇
  1999年   74篇
  1998年   60篇
  1997年   56篇
  1996年   59篇
  1995年   46篇
  1994年   59篇
  1993年   60篇
  1992年   70篇
  1991年   42篇
  1990年   46篇
  1989年   56篇
  1988年   44篇
  1987年   44篇
  1986年   42篇
  1985年   86篇
  1984年   81篇
  1983年   28篇
  1982年   42篇
  1981年   36篇
  1980年   41篇
  1979年   67篇
  1978年   46篇
  1977年   54篇
  1976年   47篇
  1975年   31篇
  1974年   26篇
  1973年   18篇
排序方式: 共有4632条查询结果,搜索用时 15 毫秒
101.
Nanoparticles in Emissions and Atmospheric Environment: Now and Future   总被引:5,自引:0,他引:5  
Journal of Nanoparticle Research -  相似文献   
102.
Crystallization of n-hexadecane in emulsion droplets was studied using time-resolved two-dimensional small- and wide-angle x-ray scattering with differential scanning calorimetry (2D-SAXS-WAXS-in situ DSC) which provides information about both nano- and subnanoscale structural change. n-hexadecane in droplets reproducibly crystallized into the stable triclinic phase via a transient-rotator phase. This is in contrast with previous results that the rotator phase of n-hexadecane was observed only occasionally for bulk samples. Thus we confirmed the existence of rotator phase in n-hexadecane, which is important for the study of crystallization of soft materials. We suggest that the rotator phase at the interface of oil and water plays a precursor role for bulk crystallization. This study demonstrates that 2D-SAXS-WAXS-in situ DSC is a powerful tool for the study of a transient phase.  相似文献   
103.
We have developed optically-addressed and electrically-addressed liquid crystal spatial phase-only light modulators having no pixelized structures. We obtained a large depth of phase-only modulation and high diffraction efficiency based on the electro-optical characteristics of a parallel-aligned nematic liquid crystal. These spatial light modulators (SLM) are of the reflection type, so there would be a loss of power in the readout light from the half mirror, which was set up so as to separate the incident and reflected lights. To optimize the characteristics of a reflection type spatial phase-only light modulator, we have proposed an oblique incident optical readout setup. We have examined the effect of conditions such as the polarization direction and the incidence angle of the readout light, and the orientation of liquid crystal molecules in the SLM. High diffraction efficiency close to the theoretical maximum value was obtained by adjusting the above conditions. The simulation analysis can well explain the experimental results of phase modulation.  相似文献   
104.
We have observed the Fano-Kondo antiresonance in a quantum wire with a side-coupled quantum dot. In a weak coupling regime, dips due to the Fano effect appeared. As the coupling strength increased, conductance in the regions between the dips decreased alternately. From the temperature dependence and the response to the magnetic field, we conclude that the conductance reduction is due to the Fano-Kondo antiresonance. At a Kondo valley with the Fano parameter q approximately 0, the phase shift is locked to pi/2 against the gate voltage when the system is close to the unitary limit in agreement with theoretical predictions by Gerland et al. [Phys. Rev. Lett. 84, 3710 (2000)].  相似文献   
105.
Silicon dioxide (SiO2) layers with a thickness more than 10 nm can be formed at ∼120 °C by direct Si oxidation with nitric acid (HNO3). Si is initially immersed in 40 wt.% HNO3 at the boiling temperature of 108 °C, which forms a ∼1 nm SiO2 layer, and the immersion is continued after reaching the azeotropic point (i.e., 68 wt.% HNO3 at 121 °C), resulting in an increase in the SiO2 thickness. The nitric acid oxidation rates are the same for (1 1 1) and (1 0 0) orientations, and n-type and p-type Si wafers. The oxidation rate is constant at least up to 15 nm SiO2 thickness (i.e., 1.5 nm/h for single crystalline Si and 3.4 nm/h for polycrystalline Si (poly-Si)), indicating that the interfacial reaction is the rate-determining step. SiO2 layers with a uniform thickness are formed even on a rough surface of poly-Si thin film.  相似文献   
106.
A magnetic vortex core in a ferromagnetic circular nanodot has a resonance frequency originating from the confinement of the vortex core. By the micromagnetic simulation including the spin-transfer torque, we show that the vortex core can be resonantly excited by an ac (spin-polarized) current through the dot and that the resonance frequency can be tuned by the dot shape. The resistance measurement under the ac current successfully detects the resonance at the frequency consistent with the simulation.  相似文献   
107.
By stabilizing the beam pointing of optical trapping beams, we have succeeded in stable formation of Bose–Einstein condensate (BEC) of 87Rb with all-optical method. The thermal effect of acousto-optic modulator (AOM) is usually one of the most serious problems to induce beam-pointing instability, especially for high power CO2 laser. By passing the beam through AOM twice, we have improved the beam pointing from about 4.8 mrad to less than 0.4 mrad, which has been experimentally confirmed to be small enough to stably form BEC at the crossed region of CO2 lasers as well as to perform experiments using an optical lattice which might have been affected by beam-pointing instability. PACS 32.80.Pj; 42.79.Jq; 03.75.Mn  相似文献   
108.
We theoretically demonstrate optical pulsation based on optical near-field interactions between quantum nanostructures. It is composed of two quantum dot systems, each of which consists of a combination of smaller and larger quantum dots, so that optical excitation transfer occurs. With an architecture in which the two systems take the role of a timing delay and frequency up-conversion, we observe pulsation in populations pumped by continuous-wave light irradiation. The pulsation is induced with suitable setting of parameters associated with the optical near-field interactions. This will provide critical insights toward the design and implementation of experimental nanophotonic pulse generating devices.  相似文献   
109.
Toward searching for illegal drugs, we investigated the pulsed nuclear quadrupole resonance (NQR) response of 14N in (1R,2S)-(-)-norephedrine, based on the predictions of quantum chemical calculations. Two pairs of spectral lines (ν+=3.089, 3.093 MHz and ν=2.594, 2.608 MHz) were observed despite its molecule structure having only a single nitrogen atom. This indicates that the molecular crystal has two nonequivalent nitrogen atoms in the unit cell. The temperature dependence of the NQR frequencies and relaxation properties were investigated for the purpose of accurate remote sensing of the drugs. The NQR frequency shift was approximately 0.23 kHz/K around room temperature. The spin-lattice relaxation and spin-phase memory times were 5.2–10.2 ms and 0.6–1.5 ms, respectively.  相似文献   
110.
We measure the current and shot noise in a quantum dot in the Kondo regime to address the nonequilibrium properties of the Kondo effect. By systematically tuning the temperature and gate voltages to define the level positions in the quantum dot, we observe an enhancement of the shot noise as temperature decreases below the Kondo temperature, which indicates that the two-particle scattering process grows as the Kondo state evolves. Below the Kondo temperature, the Fano factor defined at finite temperature is found to exceed the expected value of unity from the noninteracting model, reaching 1.8±0.2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号