首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2312篇
  免费   67篇
  国内免费   12篇
化学   1669篇
晶体学   10篇
力学   35篇
数学   443篇
物理学   234篇
  2023年   14篇
  2022年   23篇
  2021年   38篇
  2020年   43篇
  2019年   44篇
  2018年   22篇
  2017年   20篇
  2016年   65篇
  2015年   39篇
  2014年   50篇
  2013年   74篇
  2012年   109篇
  2011年   105篇
  2010年   55篇
  2009年   80篇
  2008年   130篇
  2007年   104篇
  2006年   102篇
  2005年   94篇
  2004年   88篇
  2003年   92篇
  2002年   91篇
  2001年   40篇
  2000年   59篇
  1999年   36篇
  1998年   47篇
  1997年   50篇
  1996年   46篇
  1995年   35篇
  1994年   45篇
  1993年   33篇
  1992年   25篇
  1991年   35篇
  1990年   24篇
  1989年   19篇
  1988年   30篇
  1987年   24篇
  1986年   16篇
  1985年   26篇
  1984年   40篇
  1983年   25篇
  1982年   35篇
  1981年   32篇
  1980年   26篇
  1979年   16篇
  1978年   16篇
  1977年   18篇
  1976年   17篇
  1975年   10篇
  1973年   7篇
排序方式: 共有2391条查询结果,搜索用时 15 毫秒
191.
Realizing the full potential of oxide‐supported single‐atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one‐pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization‐hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double‐bond migration and anti‐Markovnikov α‐olefin hydrosilylation, respectively. First‐principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single‐pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio‐selectivity (>95 %) even from industrially‐relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide‐supported single‐atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
192.
Summary: 1,3‐Bis(methacrylamido)propane‐2‐yl dihydrogen phosphate ( 1 ) was synthesised by phosphorylation of 1,3‐bis(methacrylamido)‐2‐hydroxypropane ( 2 ) with phosphorus oxychloride in tetrahydrofuran (THF) in the presence of triethylamine (TEA). The structure of the new monomer 1 was characterised by IR, 1H NMR, 13C NMR and 31P NMR spectroscopies, elemental analysis and mass spectrometry. The monomer dissolves well in water, ethanol or aqueous THF and shows an improved hydrolytic stability compared to the corresponding methacrylate‐based dihydrogen phosphates. 1 was homopolymerised in ethanol with 2,2′‐azoisobutyronitrile (AIBN) as the initiator at 55–75 °C under the formation of an insoluble, cross‐linked product. Aqueous solutions of 1 are strongly acidic and enable to etch enamel and dentin. Nevertheless, 1 did not show any cytotoxic effect. Furthermore, the adhesive properties of 1 were measured.

1,3‐Bis(methacrylamido)propane‐2‐yl dihydrogen phosphate.  相似文献   

193.
The title compound, [Cu8(C8H24O2Si)2(C3H7NO)8]·C4H4N2·C3H7NO, features a sandwich‐like cage enclosing a pyrazine mol­ecule, both situated on a centre of inversion. In addition, the crystal structure contains one dimethyl­formamide mol­ecule which is disordered over a centre of inversion. The copper layer, containing eight atoms, is located between two siloxanolate fragments. The whole structure of Cu atoms and siloxanolate rings is distorted by the pyrazine mol­ecule, leading to an oval form. As a result, the angles between the Cu atoms differ at the copper layer. The difference in the angles could lead to some deviations in the Cu–Cu exchange inter­actions within the copper ring, which is of inter­est for mol­ecular magnetism.  相似文献   
194.
Pd-mediated reactions have emerged as a powerful tool for the site-selective and bioorthogonal late-stage diversification of amino acids, peptides and related compounds. Indole moieties of tryptophan derivatives are susceptible to C2H-activation, whereas halogenated aromatic amino acids such as halophenylalanines or halotryptophans provide a broad spectrum of different functionalisations. The compatibility of transition-metal-catalysed cross-couplings with functional groups in peptides, other biologically active compounds and even proteins has been demonstrated. This Review primarily compiles the application of different cross-coupling reactions to modify halotryptophans, halotryptophan containing peptides or halogenated, biologically active compounds derived from tryptophan. Modern approaches use regio- and stereoselective biocatalytic strategies to generate halotryptophans and derivatives on a preparative scale. The combination of bio- and chemocatalysis in cascade reactions is given by the biocompatibility and bioorthogonality of Pd-mediated reactions.  相似文献   
195.
Tetraaryltetrabenzoporphyrins (TATBPs) show, due to their optoelectronic properties, rising potential as dyes in various fields of physical and biomedical sciences. However, unlike in the case of porphyrins, the potential structural diversity of TATBPs has been explored only to little extent, owed mainly to synthetic hurdles. Herein, we prepared a comprehensive library of 30 TATBPs and investigated their fundamental properties. We elucidated structural properties by X-ray crystallography and found explanations for physical properties such as solubility. Fundamental electronic aspects were studied by optical spectroscopy as well as by electrochemistry and brought in context to the stability of the molecules. Finally, we were able to develop a universal synthetic protocol, utilizing a readily established isoindole synthon, which gives TATBPs in high yields, regardless of the nature of the used arylaldehyde and without meticulous chromatographic purifications steps. This work serves as point of orientation for scientists, that aim to utilize these molecules in materials, nanotechnological, and biomedical applications.  相似文献   
196.
Difluorothiophosphoryl isocyanate, F2P(S)NCO was characterized with UV/vis, NMR, IR (gas and Ar-matrix), and Raman (liquid) spectroscopy. Its molecular structure was also established by means of gas electron diffraction (GED) and single crystal X-ray diffraction (XRD) in the gas phase and solid state, respectively. The analysis of the spectroscopic data and molecular structures is complemented by extensive quantum-chemical calculations. Theoretically, the Cs symmetric syn-conformer is predicted to be the most stable conformation. Rotation about the P−N bond requires about 9 kJ mol−1 and the predicted existence of an anti-conformer is dependent on the quantum-chemical method used. This syn-orientation of the isocyanate group is the only one found in the gas phase and contained likewise in the crystal. The overall molecular structure is very similar in gas and solid, despite in the solid state the molecules arrange through intramolecular O⋅⋅⋅F contacts into layers, which are further interconnected by S⋅⋅⋅N, S⋅⋅⋅C and C⋅⋅⋅F contacts. Additionally, the photodecomposition of F2P(S)NCO to form CO, F2P(S)N, and F2PNCO is observed in the solid Ar-matrix.  相似文献   
197.
Dilithiated N,N′‐dimethyl‐piperazine, LiCH2N(CH2CH2)2 NCH2Li ( 2 ) was prepared by transmetallation of N,N′‐bis(trimethylstannylmethyl)‐piperazine ( 1 ) with nBuLi and was isolated as a highly pyrophoric yellowish powder in high yield. Compound 2 was characterized by elemental analysis and was reacted as difunctional aminomethylating reagent with dialkyl‐earth metal chlorides, R2MCl (M = Al, Ga; R = Me, tBu) which resulted in the formation of spirocyclic adducts of N,N′‐bis(dialkylmetallamethyl)‐piperazine and unreacted dialkylmetal chlorides, [(Me2AlCl)Me2AlCH2N(CH2CH2)2NCH2AlMe2(ClAlMe2)] ( 3 ) and [(tBu2GaCl)tBu2GaCH2N(CH2CH2)2NCH2GatBu2(ClGatBu2)] ( 4 ) with five‐membered rings. Compounds 1 , 3 and 4 were identified by NMR‐spectroscopy (1H, 13C, 119Sn for 1 , 27Al for 3 ), mass spectra (EI, for 1 ) and by crystal structure determinations.  相似文献   
198.
Optoelectronic properties of a polyphenylenevinylene-based oligomer and its paracylophane-linked dimer are studied using a variety of experimental and theoretical techniques. Despite the symmetrical structure and redshifted absorption of the dimer versus the monomer, an exciton picture is not the most appropriate. Electronic structure calculations establish changes in charge density upon optical excitation and show localized excitations that cannot be accounted for by a simple Frenkel exciton model. Visible frequency pump-probe anisotropy measurements suggest that the dimer should be considered as a three-level system with a fast, approximately 130 fs, internal conversion from the higher to lower energy excited electronic state. Signatures of nuclear relaxation processes are compared for electric field-resolved transient grating and two-dimensional photon echo spectra. These measurements reveal that nuclear relaxation occurs on similar time scales for the monomer and dimer. The connection between the spectral phase of four-wave mixing signals and the time dependent width of a nuclear wave packet is discussed. Semiempirical electronic structure and metropolis Monte Carlo calculations show that the dominant line broadening mechanisms for the monomer and dimer are associated with inter-ring torsional coordinates. Together, the theoretical calculations and electric field-resolved four-wave mixing experiments suggest that while the structure of dimer is more rigid than that of monomer, the difference in their rigidities is not sufficient to slow down excited state relaxation of dimer with respect to the monomer.  相似文献   
199.
Realizing the full potential of oxide-supported single-atom metal catalysts (SACs) is key to successfully bridge the gap between the fields of homogeneous and heterogeneous catalysis. Here we show that the one-pot combination of Ru1/CeO2 and Rh1/CeO2 SACs enables a highly selective olefin isomerization-hydrosilylation tandem process, hitherto restricted to molecular catalysts in solution. Individually, monoatomic Ru and Rh sites show a remarkable reaction specificity for olefin double-bond migration and anti-Markovnikov α-olefin hydrosilylation, respectively. First-principles DFT calculations ascribe such selectivity to differences in the binding strength of the olefin substrate to the monoatomic metal centers. The single-pot cooperation of the two SACs allows the production of terminal organosilane compounds with high regio-selectivity (>95 %) even from industrially-relevant complex mixtures of terminal and internal olefins, alongside a straightforward catalyst recycling and reuse. These results demonstrate the significance of oxide-supported single-atom metal catalysts in tandem catalytic reactions, which are central for the intensification of chemical processes.  相似文献   
200.
An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17beta-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 +/- 0.31 ng E2 CALUX equivalents (E2-CEQs) per m(3) of unfiltered exhaust. In filtered exhaust, we measured 0.74 +/- 0.07 (iron-catalyzed DPF) and 0.55 +/- 0.09 ng E2-CEQ m(-3) (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号