首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   2篇
  国内免费   1篇
化学   124篇
力学   3篇
数学   1篇
物理学   65篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   11篇
  2011年   16篇
  2010年   7篇
  2009年   1篇
  2008年   7篇
  2007年   13篇
  2006年   11篇
  2005年   15篇
  2004年   11篇
  2003年   8篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1997年   5篇
  1996年   7篇
  1995年   5篇
  1994年   7篇
  1993年   3篇
  1992年   8篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1974年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
91.
Cobalt hangman corrole, bearing β-octafluoro and meso-pentafluorophenyl substituents, is an active water splitting catalyst. When immobilized in Nafion films, the turnover frequencies for the 4e(-)/4H(+) process at the single cobalt center of the hangman platform approach 1 s(-1). The pH dependence of the water splitting reaction suggests a proton-coupled electron transfer (PCET) catalytic mechanism.  相似文献   
92.
93.
Proton-coupled electron transfer (PCET) kinetics of a Zn(II) porphyrin donor noncovalently bound to a naphthalene-diimide acceptor through an amidinium-carboxylate interface have been investigated by time-resolved spectroscopy. The S1 singlet excited-state of a Zn(II) 2-amidinium-5,10,15,20-tetramesitylporphyrin chloride (ZnP-beta-AmH+) donor is sufficiently energetic (2.04 eV) to reduce a carboxylate-diimide acceptor (DeltaG degrees = -460 mV, THF). Static quenching of the porphyrin fluorescence is observed and time-resolved measurements reveal more than a 3-fold reduction in the S1 lifetime of the porphyrin upon amidinium-carboxylate formation (THF, 298 K). Picosecond transient absorption spectra of the free ZnP-beta-AmH+ in THF reveal the existence of an excited-state isosbestic point between the S1 and T1 states at lambdaprobe = 650 nm, providing an effective 'zero-kinetics' background on which to observe the formation of PCET photoproducts. Distinct rise and decay kinetics are attributed to the build-up and subsequent loss of intermediates resulting from a forward and reverse PCET reaction, respectively (kPCET(fwd) = 9 x 108 s-1 and kPCET(rev) = 14 x 108 s-1). The forward rate constant is nearly 2 orders of magnitude slower than that measured for covalently linked Zn(II) porphyrin-acceptor dyads of comparable driving force and D-A distance, establishing the importance of a proximal proton network in controlling charge transport.  相似文献   
94.
L. Nocera 《Annals of Physics》2008,323(10):2482-2504
Electrostatic tripolar regions in plasmas develop a skewness of their own electric potential waveform as a peculiar morphological property, which distinguishes them from symmetric electrostatic solitary waves. Within the collision-less, kinetic treatment developed here, this property holds if the velocity distributions of electrons and ions are singular in value, irrespective of their smoothness at the region’s boundary and of the smoothness of the potential waveform and of the electron and ion density distributions. These singularities are integrable, and are of the logarithmic and jump type: the former occur at isolated points in phase space; the latter occur on the left branch of the electron separatrix and on the left branch of the ion sub-separatrix. The distributions are non-negative if, at its local extrema, the potential waveform is skewed to the left, in agreement with observations, and if the skewness is smaller than a given bound: a sufficient condition for such skewness to be small about the minimum of the potential waveform is that a sufficiently fast electron beam exists on the high-potential boundary of the tripolar region. In those special cases in which the particle distributions are continuous in value, the above mentioned singularities affect their space and velocity derivatives. These results could be extracted from very general considerations on the degree of smoothness of the spatial distribution of the electric potential and on the non-negativity of the electron and ion distributions, without the assistance of any specific models.  相似文献   
95.
We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.  相似文献   
96.
Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.  相似文献   
97.
The C-H bonds of hydrocarbons are oxidized catalytically by the electron-deficient Pacman porphyrin, (DPDF)Fe2O, using visible light and molecular oxygen as the terminal oxidant and oxygen atom source. The photocatalytic reactions proceed under mild conditions (ambient temperature and pressure) without the need for an external co-reductant.  相似文献   
98.
99.
A detailed density functional study was performed to examine the reaction of mixed-valence dirhodium and diiridium species [M(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)(Cl)(2) (1, tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyaninde)] with HCl and oxygen with an interest in examining the pathways for oxygen insertion into the intermediate metal hydride to form hydroperoxo species. The O(2) hydrogen atom abstraction mechanism for both the Rh and Ir was found to be feasible. This is the first time this mechanism has been applied to a Rh system and only the second time it has been examined for a system other than Pd. The competing trans HCl reductive elimination pathway was also examined and found to be greatly dependent on the stereochemistry of the starting hydride primarily due to the intermediate formed upon the loss of Cl(-). As a result, the reductive elimination pathway was more favorable by 11.5 kcal/mol for the experimentally observed Ir stereoisomer, while the two pathways were isoenergetic for the other stereoisomer of the Rh complex. All findings are consistent with the kinetics study previously performed.  相似文献   
100.
Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu(3)(OH)(6)Cl(2). This geometrically frustrated kagome? antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome? layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn(0.85)Cu(0.15))Cu(3)(OH)(6)Cl(2). The lack of Zn mixing onto the kagome? lattice sites lends support to the idea that the electronic ground state in ZnCu(3)(OH)(6)Cl(2) and its relatives is nontrivial.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号