首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   2篇
化学   122篇
力学   3篇
物理学   15篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   11篇
  2011年   16篇
  2010年   7篇
  2009年   1篇
  2008年   7篇
  2007年   13篇
  2006年   11篇
  2005年   15篇
  2004年   10篇
  2003年   8篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1997年   4篇
  1996年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
排序方式: 共有140条查询结果,搜索用时 234 毫秒
91.
We report the syntheses and magnetic properties of hybrid organic-inorganic materials that represent layer-expanded versions of the rare mineral lindgrenite (Cu3(OH)2(MoO4)2). The structures of these compounds feature one-dimensional chains of alternating corner- and edge-sharing Cu(II) triangles. By expanding the inorganic layers of lindgrenite with 4,4'-bipyridine, spin-frustrated antiferromagnetism is revealed by a change of the spin frustration parameter f from 1.2 in lindgrenite to 19.4 in (4,4'-bpy)Cu3(OH)2(MoO4)2.  相似文献   
92.
Chang CJ  Loh ZH  Deng Y  Nocera DG 《Inorganic chemistry》2003,42(25):8262-8269
The molecular recognition properties of dizinc(II) bisporphyrin anchored by dibenzofuran (DPD), Zn2(DPD) (1), were evaluated as a strategy for utilizing the Pacman effect to control the excited-state properties of cofacial bisporphyrin motifs. Crystallographic studies establish that DPD furnishes a cofacial system with vertical flexibility and horizontal preorganization. The structure determination of a substrate-bound DPD species, Zn2(DPD)(2-aminopyrimidine) (2), completes a set of structurally homologous zinc(II) porphyrin host and host-guest complexes, which offer a direct structural comparison for the Pacman effect upon substrate complexation. Binding studies reveal that pyrimidine encapsulation by the DPD framework is accompanied by a markedly reduced entropic penalty (approximately 60 J mol(-1)K(-1)) with respect to traditional face-to-face bisporphyrin systems, giving rise to a smaller conformational energy cost upon substrate binding. Transient absorption spectroscopy reveals that substrate encapsulation within the DPD cleft dramatically affects excited-state dynamics of cofacial bisporphyrins. The emission lifetime of host-guest complex 2 increases by more than an order of magnitude compared to free host 1. In the absence of the guest, the excited-state dynamics are governed by torsional motion of the porphyrin rings about the aryl ring of the DPD pillar. Host-guest binding attenuates this conformational flexibility, thereby removing efficient nonradiative decay pathways. Taken together, these findings support the exceptional ability of the DPD system to structurally accommodate reaction intermediates during catalytic turnover and provide a novel supramolecular approach toward developing a reaction chemistry derived directly from the excited states of Pacman constructs.  相似文献   
93.
A modular synthetic strategy for the construction of cofacial porphyrin architectures bearing hydrogen-bond synthons on a xanthene platform is presented. The convergent approach is based on a xanthene aldehyde-ester building block that is easily obtainable on a multigram scale with minimal purification. Treatment of this xanthene derivative with a variety of aryl aldehydes and pyrrole under standard Lindsey conditions affords a family of meso-substituted porphyrins bearing a single functionalized xanthene spacer. Direct modification of the hydrogen-bond synthon after macrocyclization proceeds smoothly to furnish porphyrin systems with a variety of cofacial functionalities (e.g., carboxylic acid, ester, amide). Porphyrins bearing two trans-functionalized xanthene spacers are prepared by the MacDonald [2 + 2] condensation of the xanthene aldehyde-ester with readily available 5-aryl-substituted dipyrromethanes such as 5-mesityldipyrromethane to afford the pure alpha,alpha- and alpha,beta-porphyrin atropisomers after chromatographic separation. The versatility of this synthetic method offers intriguing opportunities for the use of these and related templates for the study of proton-coupled activation of small molecules.  相似文献   
94.
The quadruply bonded metal-metal complexes cis-Mo(2)Cl(2)(6-mhp)(2)(PR(3))(2) (R(3) = Et(3), Me(3), Me(2)Ph, MePh(2); 6-mhp = 2-hydroxy-6-methylpyridinato) photoreact when their solutions are irradiated with visible and near-UV light. The primary photoprocess leads to the ligand redistribution products Mo(2)Cl(3)(6-mhp)(PR(3))(3) and Mo(2)Cl(6-mhp)(3)(PR(3)). In THF at room temperature, these photoproducts are stable and over time they back-react completely to the starting material. Photolysis of cis-Mo(2)Cl(2)(6-mhp)(2)(PR(3))(2) in DMF results in the same products; however, Mo(2)Cl(3)(6-mhp)(PR(3))(3) rapidly decomposes, leaving Mo(2)Cl(6-mhp)(3)(PR(3)) as the only isolable photoproduct. Conversely, when the reaction is carried out in benzene, Mo(2)Cl(6-mhp)(3)(PR(3)) undergoes a slow secondary photoreaction and Mo(2)Cl(3)(6-mhp)(PR(3))(3) is the photoproduct that is isolated. At a given wavelength, the photolysis quantum yield (Phi(p)) increases along the solvent series C(6)H(6) < THF < DMF (Phi(p)(405) = 0.00042, 0.00064, and 0.00097, respectively, for cis-Mo(2)Cl(2)(6-mhp)(2)(PMe(2)Ph)(2)). For a given solvent, Phi(p) increases with decreasing excitation wavelength (Phi(p)(546) = 0.00012, Phi(p)(436) = 0.00035, Phi(p)(405) = 0.00042, Phi(p)(366) = 0.0022, and Phi(p)(313) = 0.0079 in C(6)H(6)). This wavelength dependence of the photoreaction quantum yield in conjunction with the excitation spectrum establishes that the photoreaction does not originate from the lowest energy deltadelta excited state, which possesses a long lifetime and an appreciable emission quantum yield in C(6)H(6), CH(2)Cl(2), THF, and DMF. The photochemistry is instead derived from higher energy excited states with the maximum photoreactivity observed for excitation wavelengths coinciding with absorption features previously assigned to ligand-to-metal charge transfer transitions.  相似文献   
95.
96.
97.
Redox-based, hydrothermal synthetic methodologies have enabled the preparation of a new series of stoichiometrically pure jarosites of the formula, AV(3)(OH)(6)(SO(4))(2) with A = Na(+), K(+), Rb(+), Tl(+), and NH(4)(+). These jarosites represent the first instance of strong ferromagnetism within a Kagomé layered framework. The exchange interaction, which is invariant to the nature of the A(+) ion (theta(CW) approximately equal to +53(1) K), propagates along the d(2) magnetic sites of the triangular Kagomé lattice through bridging hydroxyl groups. An analysis of the frontier orbitals suggests this superexchange pathway to possess significant pi-orbital character. Measurements on a diamagnetic host jarosite doped with magnetically dilute spin carriers, KGa(2.96)V(0.04)(OH)(6)(SO(4))(2), reveal significant single-ion anisotropy for V(3+) ion residing in the tetragonal crystal field. This anisotropy confines the exchange-coupled moments to lie within the Kagomé layer. Coupling strengths are sufficiently strong to prevent saturation of the magnetization when an external field is applied orthogonal to the Kagomé layer. Antiferromagnetic ordering of neighboring ferromagnetic Kagomé layers becomes dominant at low temperatures, characteristic of metamagnetic behavior for the AV(3)(OH)(6)(SO(4))(2) jarosites. This interlayer exchange coupling decreases monotonically with increasing layer spacing along the series, A = Na(+), K(+), Rb(+), NH(4)(+), and Tl(+), and it may be overcome by the application of external field strengths in excess of approximately 6 kOe.  相似文献   
98.
Chng LL  Chang CJ  Nocera DG 《Organic letters》2003,5(14):2421-2424
[reaction: see text] A library of hanging porphyrin xanthene (HPX) compounds containing pendant groups with various proton-donating abilities (pK(a) ranging from approximately 2 to 25) has been synthesized. Their corresponding chloroiron(III) complexes promote the catalase-like disproportionation of hydrogen peroxide. The overall activity and turnover numbers (TONs) are maximal for iron HPX complexes bearing acidic hydrogen-bond pendants. These results establish that careful control of intramolecular proton inventory can dramatically influence the catalytic activation of O-O bonds.  相似文献   
99.
The excited state properties of a series of singly bonded dirhodium compounds, consisting of Rh(0)(2), Rh(0)Rh(II)X(2), and Rh(II)(2)X(4) (X = Cl and Br) cores coordinated by three bis(difluorophosphino)methylamine ligands, have been investigated. The newly synthesized complexes with X = Br have been structurally characterized. The mixed-valence complex Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(2)[(PF(2))CH(3)N(PF(2))] crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 13.868(7) ?, b = 16.090(5) ?, c = 11.614(5) ?, V = 1591(3) ?(3), and Z = 4; the structure was refined to values of R = 0.052 and R(w) = 0.062. Orange crystals of Rh(2)[&mgr;-CH(3)N(PF(2))(2)](3)Br(4) are monoclinic with a C2/c space group: a = 14.62(6) ?, b = 12.20(2) ?, c = 14.33(1) ?; beta = 106.0(2) degrees; V = 2457(11) ?(3); Z = 4; and R = 0.058 and R(w) = 0.056. Crystalline solids and low-temperature glasses of each member of the chloride and bromide series exhibit long-lived red luminescence. Excitation profiles and temperature dependencies of the emission bandwidths and lifetimes for all complexes are characteristic of luminescence originating from a dsigma excited state. Efficient nonradiative decay is observed upon the thermal population of an excited state proximate to the lowest energy emissive excited state of these complexes. The nonradiative decay rate constant of the upper excited state is 10(2)-10(3) and 10(3)-10(4) greater than that of the emissive excited state for complexes with X = Cl and Br, respectively.  相似文献   
100.
Picosecond transient absorption spectroscopy of diiron(III) mu-oxo bisporphyrins appended to xanthene, (DPX)Fe2O and (DPXM)Fe2O, and dibenzofuran (DPD)Fe2O have been investigated in order to decipher the effect of a spring-loaded cleft on their photophysics and attendant oxidation photocatalysis. The tension of the cofacial pocket is systematically tuned with the bridge span and meso-substitution opposite to the bridge; the distances of the relaxed cofacial pockets and clamped Fe-O-Fe pockets are known from X-ray crystallography (Deltad(M-M)(relaxed-clamped)=4.271 A (DPD), 2.424 A (DPXM), 0.208 A (DPX)). The photophysical and chemical properties of these cofacial platforms are compared to the unbridged diiron(III) mu-oxo analogue, (Etio)2Fe2O. Photon absorption by the diiron(III) mu-oxo chromophore prompts Fe-O-Fe photocleavage to release the spring and present a PFeIVO/PFeII pair (P=porphyrin subunit); net photooxidation is observed when oxygen atom transfer to substrate occurs before the spring can reclamp to form the mu-oxo species. The inherent lifetimes of the PFeIVO/PFeII pairs for the four compounds are surprisingly similar (tau[(DPD)Fe2O]=1.36(3) ns, tau[(DPX)Fe2O]=1.26(5) ns, tau[(DPXM)Fe2O]=1.27(9) ns, and tau[(Etio)2Fe2O]=0.97(3) ns), considering the structural differences arising from tensely clamped (DPD and DPXM), relaxed (DPX), and unbridged (Etio) cofacial architectures. However, the rates of net oxygen atom transfer for (DPD)Fe2O and (Etio)2Fe2O are found to be 4 orders of magnitude greater than that of (DPX)Fe2O and 2 orders of magnitude greater than that of (DPXM)Fe2O. These results show that the spring action of the cleft, known as the Pacman effect, does little to impede reclamping to form the mu-oxo species but rather is manifest to opening the cofacial cleft to allow substrate access to the photogenerated oxidant. Consistent with this finding, photooxidation efficiencies decrease as the steric demand of substrates increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号