首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   29篇
  国内免费   1篇
化学   512篇
晶体学   13篇
力学   12篇
数学   73篇
物理学   139篇
  2023年   11篇
  2022年   27篇
  2021年   20篇
  2020年   17篇
  2019年   19篇
  2018年   8篇
  2017年   14篇
  2016年   30篇
  2015年   19篇
  2014年   37篇
  2013年   57篇
  2012年   50篇
  2011年   54篇
  2010年   34篇
  2009年   32篇
  2008年   40篇
  2007年   34篇
  2006年   40篇
  2005年   34篇
  2004年   27篇
  2003年   15篇
  2002年   9篇
  2001年   12篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   16篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   2篇
  1991年   3篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1982年   1篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有749条查询结果,搜索用时 15 毫秒
91.
Carbon black is widely used as an active filler in the rubber industry to improve the physical properties of rubber. The surface energy of carbon black is high compared to that of various elastomers like styrene–butadiene rubber (SBR), butadiene rubber (BR) and ethylene–propylene–diene rubber (EPDM). The work aims at reducing the surface energy of carbon black by modifying its surface for application especially in rubber blends. The present paper looks into the possibility of using plasma polymerisation of acetylene as a surface modification technique for carbon black in comparison with silica. Thermogravimetric analysis, wetting behaviour with various liquids of known surface tension and time of flight secondary ion mass spectrometry (ToF-SIMS) were used to characterise the carbon black before and after surface modification. The study shows that surface modification of carbon black by plasma polymerisation is difficult in comparison with silica, unless treated for long duration. The mechanistic aspects of the surface modification and the importance of active sites on the carbon black surface for effective modification are discussed in the paper.  相似文献   
92.
The ability to prepare nanostructured metal catalysts requires the ability to control size and interparticle spatial and surface access properties. In this work, we report novel findings of an atomic force microscopic investigation of a controlled thermal activation strategy of gold catalysts nanostructured via molecular wiring or linking on a substrate surface. Gold nanocrystals of approximately 2 nm diameter capped by decanethiolate and wired by 1,9-nonanedithiolate on mica substrates were studied as a model system. By manipulating the activation temperature (200-250 degrees C), the capping/wiring molecules can be removed to produce controllable particle size and interparticle spatial morphology. The electrocatalytic activity of the activated nanostructures toward methanol oxidation, which is of fundamental importance to fuel cell catalysis, has been demonstrated. The novelty of the findings is the viability of a thermal activation strategy of core-shell nanostructured catalysts based on molecularly predefined interparticle spatial properties on a substrate, which upon further investigation may form the basis for spatially controllable nanostructured catalysts.  相似文献   
93.
Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235U/238U “major” isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the “minor” 234U/238U and 236U/238U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235U/238U isotope-amount ratios. Characterized values of the 234U/238U and 236U/238U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233U/238U isotope-amount ratio in CRM 115 is estimated to be <5 × 10?9. The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed.  相似文献   
94.
Thermal behaviour of nickel amine complexes containing SO4 2−, NO3 , Cl and Br as counter ions and ammonia and ethylenediamine as ligands have been investigated using simultaneous TG/DTA coupled with mass spectroscopy (TG/DTA–MS). Evolved gas analyses detected various transient intermediates during thermal decomposition. The nickel ammonium sulphate complex produces NH, N, S, O and N2 species. The nickel ammonium nitrate complex generated fragments like N, N2, NO, O2, N2O, NH2 and NH. The halide complexes produce NH2, NH, N2 and H2 species during decomposition. The ligand ethylenediamine is fragmented as N2/C2H4, NH3 and H2. The residue hexaamminenickel(II) sulphate produces NiO with crystallite size 50 nm. Hexaammine and tris(ethylenediamine)nickel(II) nitrate produce NiO in the range 25.5 nm and 23 nm, respectively. The halide complexes produce nano sized metallic nickel (20 nm) as the residue. Among the complexes studied, the nitrate containing complexes undergo simultaneous oxidation and reduction.  相似文献   
95.
The first charge‐neutral Lewis base adducts of tin(IV) tetraazide, [Sn(N3)4(bpy)], [Sn(N3)4(phen)] and [Sn(N3)4(py)2], and the salt bis{bis(triphenylphosphine)iminium} hexa(azido)stannate [(PPN)2Sn(N3)6] (bpy = 2,2′‐bipyridine; phen = 1,10‐phenanthroline; py = pyridine; PPN = N(PPh3)2) have been prepared using covalent or ionic azide‐transfer reagents and ligand‐exchange reactions. The azides were isolated on the 0.3 to 1 g scale and characterized by IR and NMR spectroscopies, microanalytical and thermal methods and their molecular structures determined by single‐crystal XRD. All complexes have a distorted octahedral Sn[N]6 coordination geometry and possess greater thermal stability than their Si and Ge homologues. The nitrogen content of the adducts of up to 44 % exceed any SnIV compound known hitherto.  相似文献   
96.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
97.
Solid polymer electrolytes (SPEs) with high ionic conductivity and acceptable mechanical properties are of particular interest for increasing the performance of batteries. In the present work, SPEs based on poly(ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) with various lithium salts were prepared by solvent casting technique. The amorphous nature of the polymer-salt complex was studied by X-ray diffraction analysis. The complexation of the prepared electrolytes was confirmed by Fourier transform infrared analysis. Ionic conductivity as a function of frequency was studied at various temperatures in the range of 303–353 K. The maximum ionic conductivity value was found to be 1.08 × 10?5 S/cm for the film containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) at room temperature and the temperature dependent ionic conductivity values seem to obey Vogel-Tamman-Fulcher relation. Thermogravimetry was used to ascertain the thermal stability of the electrolytes. Photoluminescence measurements demonstrated that the sample having maximum ionic conductivity shows the minimum luminescence intensity. Ultra violet-visible analysis reveals that the values of the band gap energies were changed with the addition of various lithium salts. Porosity of the sample containing lithium bis trifluoromethane sulfonoimide (LiN[CF3SO2]2) was studied by Atomic force microscope.  相似文献   
98.
Epoxides undergo a highly efficient and selective rearrangement in the presence of catalytic quantities of copper tetrafluoroborate to give carbonyl compounds in excellent yields. The low toxicity and ease of handling of this reagent make it an attractive alternative to the more corrosive Lewis acids frequently employed.  相似文献   
99.
100.
Solvothermal reaction of H4L (L=biphenyl‐3,3′,5,5′‐tetracarboxylate) and Bi(NO3)3 ? (H2O)5 in a mixture of DMF/MeCN/H2O in the presence of piperazine and nitric acid at 100 °C for 10 h affords the solvated metal–organic polymer [Bi2(L)1.5(H2O)2] ? (DMF)3.5 ? (H2O)3 (NOTT‐220‐solv). A single crystal X‐ray structure determination confirms that it crystallises in space group P2/c and has a neutral and non‐interpenetrated structure comprising binuclear {Bi2} centres bridged by tetracarboxylate ligands. NOTT‐220‐solv shows a 3,6‐connected network having a framework topology with a {4 ? 62}2{42 ? 65 ? 88}{62 ? 8} point symbol. The desolvated material NOTT‐220a shows exceptionally high adsorption uptakes for CH4 and CO2 on a volumetric basis at moderate pressures and temperatures with a CO2 uptake of 553 g L?1 (20 bar, 293 K) with a saturation uptake of 688 g L?1 (1 bar, 195 K). The corresponding CH4 uptake was measured as 165 V(STP)/V (20 bar, 293 K) and 189 V(STP/V) (35 bar, 293 K) with a maximum CH4 uptake for NOTT‐220a recorded at 20 bar and 195 K to be 287 V(STP)/V, while H2 uptake of NOTT‐220a at 20 bar, 77 K is 42 g L?1. These gas uptakes have been modelled by grand canonical Monte Carlo (GCMC) and density functional theory (DFT) calculations, which confirm the experimental data and give insights into the nature of the binding sites of CH4 and CO2 in this porous hybrid material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号