首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   11篇
化学   80篇
力学   27篇
数学   22篇
物理学   47篇
  2023年   2篇
  2022年   5篇
  2021年   15篇
  2020年   12篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   18篇
  2015年   14篇
  2014年   12篇
  2013年   10篇
  2012年   7篇
  2011年   14篇
  2010年   8篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  1994年   1篇
  1993年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
41.
TiO(2) hollow fibers with high surface area were manufactured by a simple synthesis method, using natural cellulose fibers as template. The effective light scattering properties of the hollow fibers, originating from their micron size, were observed by diffuse reflectance spectroscopy. In spite of the micrometric length of the TiO(2) hollow fibers, the walls were highly porous and high surface area (78.2 m(2) g(-1)) was obtained by the BET method. TiO(2) hollow fibers alone and mixed with other TiO(2) pastes were sensitized with CdSe quantum dots (QDs) by Successive Ionic Layer Adsorption and Reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). High power conversion efficiency was obtained, 3.24% (V(oc) = 503 mV, J(sc) = 11.92 mA cm(-2), FF = 0.54), and a clear correspondence of the cell performance with the photoanode structure was observed. The unique properties of these fibers: high surface area, effective light scattering, hollow structure to facile electrolyte diffusion and the rather high efficiencies obtained here suggest that hollow fibers can be introduced as promising nanostructures to make highly efficient quantum dot sensitized solar cells.  相似文献   
42.
In this paper, optimal approaches for controlling chaos is studied. The unstable periodic orbits (UPOs) of chaotic system are selected as desired trajectories, which the optimal control strategy should keep the system states on it. Classical gradient-based optimal control methods as well as modern optimization algorithm Particle Swarm Optimization (PSO) are utilized to force the chaotic system to follow the desired UPOs. For better performance, gradient-based is applied in multi-intervals and the results are promising. The Duffing system is selected for examining the proposed approaches. Multi-interval gradient-based approach can put the states on UPOs very fast and keep tracking UPOs with negligible control effort. The maximum control in PSO method is also low. However, due to its inherent random behavior, its control signal is oscillatory.  相似文献   
43.
Using the method of multiple scales, an extensive frequency response and subharmonic resonance analysis of the equations of motion governing the nonlinear flexural vibrations of piezoelectrically actuated microcantilevers is performed. Such comprehensive understanding of the nonlinear response and subharmonics analysis of these microcantilevers is, indeed, justified by the applications of piezoelectrically actuated microcantilevers that are increasingly becoming popular in many science and engineering areas including scanning force microscopy, biosensors, and microactuators. Along this line, the method of multiple scales is used to derive the 2× and 3× subharmonic resonances appearing in nonlinear flexural vibrations of a piezoelectrically actuated microcantilever. An experimental examination is performed in order to verify the analytical results. The analytical and experimental results yield the same system response for the fundamental frequency. In addition, the experimental results demonstrate the presence of subharmonic resonances that are supported by numerical simulations of the equations of motion. The experimental mode shapes of these subharmonic frequencies are also measured and compared with fundamental frequency.  相似文献   
44.
45.
Transport in Porous Media - The aim of the present paper is to evaluate and compare the pore level hydrodynamic dispersion and effects of turbulence during flow in porous media. In order to compute...  相似文献   
46.

In this paper, at the first, new correlations were proposed to predict the rheological behavior of MWCNTs–SiO2/EG–water non-Newtonian hybrid nanofluid using different sets of experimental data for the viscosity, consistency and power law indices. Then, based on minimum prediction errors, two optimal artificial neural network models (ANNs) were considered to forecast the rheological behavior of the non-Newtonian hybrid nanofluid. One hundred and ninety-eight experimental data were employed for predicting viscosity (Model I). Two sets of forty-two experimental data also were considered to predict the consistency and power law indices (Model II). The data sets were divided to training and test sets which contained respectively 80 and 20% of data points. Comparisons between the correlations and ANN models showed that ANN models were much more accurate than proposed correlations. Moreover, it was found that the neural network is a powerful instrument in establishing the relationship between a large numbers of experimental data. Thus, this paper confirmed that the neural network is a reliable method for predicting the rheological behavior of non-Newtonian nanofluids in different models.

  相似文献   
47.
48.
Ebadi  Ahmad  Dastan  Dara  Azami  Mojtaba  Karimi  Adibe  Razzaghi-Asl  Nima 《Structural chemistry》2017,28(3):849-857
Structural Chemistry - Chemokine receptor 2 (CCR2), a G-protein coupled receptor (GPCR), is a critical target for several inflammatory and autoimmune diseases. The main restriction on designing...  相似文献   
49.
50.
Despite their simple structure and design, microcantilevers are receiving increased attention due to their unique sensing and actuation features in many MEMS and NEMS. Along this line, a non-linear distributed-parameters modeling of a microcantilever beam under the influence of a nanoparticle sample is studied in this paper. A long-range Van der Waals force model is utilized to describe the microcantilever-particle interaction along with an inextensibility condition for the microcantilever in order to derive the equations of motion in terms of only one generalized coordinate. Both of these considerations impose strong nonlinearities on the resultant integro-partial equations of motion. In order to provide an understanding of non-linear characteristics of combined microcantilever-particle system, a geometrical function is wisely chosen in such a way that natural frequency of the linear model exactly equates with that of non-linear model. It is shown that both approaches are reasonably comparable for the system considered here. Linear and non-linear equations of motion are then investigated extensively in both frequency and time domains. The simulation results demonstrate that the particle attraction region can be obtained through studying natural frequency of the system consisting of microcantilever and particle. The frequency analysis also proves that the influence of nonlinearities is amplified inside the particle attraction region through bending or shifting the frequency response curves. This is accompanied by sudden changes in the vibration amplitude estimated very closely by the non-linear model, while it cannot be predicted by the best linear model at all.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号