首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   8篇
化学   181篇
晶体学   3篇
力学   7篇
数学   31篇
物理学   34篇
  2024年   2篇
  2023年   7篇
  2022年   8篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   12篇
  2015年   6篇
  2014年   14篇
  2013年   21篇
  2012年   23篇
  2011年   27篇
  2010年   11篇
  2009年   11篇
  2008年   21篇
  2007年   21篇
  2006年   21篇
  2005年   7篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1995年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
41.
The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (−F) and donating (−CH3) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the −CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to −F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with −F or −CH3, the conversion proceeds via the conrotatory pathway.  相似文献   
42.
The role of conformational isomerism in molecular interaction has been studied using the example of jet-cooled complexes of (+/-)-cis-1-amino-indan-2-ol with water. The two formerly evidenced conformers of (+/-)-cis-1-amino-indan-2-ol easily form hydrates and dihydrates, which have been studied by means of laser-induced fluorescence and IR/UV double resonance spectroscopy, as well as ab initio calculations. All the 1 : 1 and 1 : 2 complexes with water evidenced in this work involve "ring" structures, in which the water monomer or dimer acts as an acceptor from the NH(2) and a donor to the OH groups of (+/-)-cis-1-amino-indan-2-ol. However, the water lies externally to the indan frame in the hydrates of conformer I of (+/-)-cis-1-amino-indan-2-ol, which possesses axial NH(2) and equatorial OH groups, and above it for the hydrates with the less stable conformer II, with equatorial NH(2) and axial OH groups. Consequently, the different steric constraints which exist in the two conformers result in different hydrogen bond topologies, with an additional OH[dot dot dot]pi interaction for the hydrates of conformer II.  相似文献   
43.
In this study, we compared the wetting and electrowetting properties of a planar parylene (poly(p-xylylene)) film to those of a nanostructured parylene film. To generate the nanostructured film, we used an aligned array of multiwalled carbon nanotubes as a template; a thin coating of parylene was deposited on the nanotube template to generate a parylene film with a nanoscale roughness structure. Static contact angle measurements indicated a very significant increase in the water contact angle from approximately 73 degrees for planar parylene to approximately 110 degrees for the nanotemplated parylene. In addition, we performed electrowetting experiments to dynamically tune the contact angle by application of electric potential. Interestingly, the flat parylene film showed contact angle saturation at an applied voltage of approximately 40 V, while the nanotemplated parylene film did not experience saturation in the contact angle response even for voltages up to 80 V. These results show that engineering a nanoscale roughness structure to a polymer film results in significant changes to the wetting and electrowetting properties of the polymer.  相似文献   
44.
Interaction of charge transfer fluorophore N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) with globular proteins Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) brings forth a marked change in the position and intensity of band maxima both in case of absorption and fluorescence spectra. Spectroscopic approach has been elaborately implemented to explore the binding phenomena of the probe with HSA and BSA and it is found that the extent of binding of the probe to both serum albumins is similar in nature. Steady state fluorescence anisotropy values, fluorescence quenching study using acrylamide quencher and Red Edge Excitation Shift (REES) help in drawing reliable conclusions regarding the location of the probe molecule within the hydrophobic cavity of the proteins. An increase in fluorescence lifetime of the probe molecule solubilized in both the proteinous media also indicate that the probe is located at the motionally restricted environment inside the hydrophobic cavity of proteins and hence non-radiative channels are less operative than in the bulk water. Similarly, the variation of position and intensity of the emission maxima of DMANAN solubilized in micellar medium of Sodium Dodecyl Sulphate (SDS) also predicts well the critical micellar concentration (CMC) and polarity of micellar microenvironment.  相似文献   
45.
We call a market competitive if increasing the endowment of one buyer does not increase the equilibrium utility of another. We show that every competitive uniform utility allocation market is a submodular utility allocation market, answering a question of Jain and Vazirani [K. Jain, V.V. Vazirani, Eisenberg-Gale markets: Algorithms and structural properties, in: STOC, 2007]. Our proof proceeds via characterizing non-submodular fractionally sub-additive functions.  相似文献   
46.
An efficient and solely stereoselective synthesis of (E)-alpha-methylcinnamic acids has been accomplished in single pot by reduction of the unmodified Baylis-Hillman adducts, methyl-3-hydroxy-3-aryl-2-methylenepropanoates with I(2)/NaBH(4) reagent system at room temperature followed by hydrolysis. The efficacy of this method has been proved in the total synthesis of 1-[p-(myristyloxy)-alpha-methylcinnamoyl]glycerol, LK-903, a highly active hypolipidemic agent.  相似文献   
47.
Here, we describe a protocol to bind individual, intact phospholipid bilayer liposomes, which are on the order of 1 microm in diameter, in microwells etched in a regular array on a silicon oxide substrate. The diameter of the wells is on the order of the liposome diameter, so only one liposome is located in each well. The background of the silicon oxide surface is functionalized with a PEG oligomer using the contact printing of a PEG silane to present a surface that resists the adsorption of proteins, lipid material, and liposomes. The interiors of the wells are functionalized with an aminosilane to facilitate the conjugation of biotin, which is then bound to Neutravidin. The avidin-coated well interiors bind the liposomes whose surfaces contain biotinylated lipids. The specific binding of the liposomes to the surface using the biotin-avidin linkage, together with the resistant nature of the background and the physical confinement of the wells, allows the liposomes to remain intact and to not unravel, rupture, and fuse onto the surface. We demonstrate this intact arraying using confocal laser scanning microscopy of fluorophores specifically tagging the microwells, the lipid bilayer, and the aqueous interior of the liposome.  相似文献   
48.
Ionic liquids were found to be a suitable reaction medium for 1,4‐dipolar cycloaddition reactions of an isoquinoline, an activated alkyne, and a 4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehyde at room temperature to afford [1]benzopyrano‐pyrido‐isoquinoline (=9aH,15H‐benzo[a][1]benzopyrano[2,3‐h]quinolizine) derivatives selectively in good yields. The ionic liquid can be recovered and recycled in further runs without loss of activity.  相似文献   
49.
Atom transfer radical polymerization (ATRP) of ethyl acrylate was carried out in bulk using ethyl 2-bromoisobutyrate as initiator, CuBr as well as CuCl as catalyst in combination with different ligands e.g., 2,2′ bipyridine (bpy)andN,N, N′,N″,N″-pentamethyldiethylenetriamine (PMDETA). In most of the cases very high conversion (72–98%) was achieved. The polymerization was well controlled with a linear increase of molecular weight (MnSEC) with conversion and relatively narrow molecular weight distributions (polydispersity index 1.2–1.3). Use of PMDETA as the ligand resulted in faster polymerization rate (98% conversion in 1 h) than those using bipyridine (72% conversion in 5 h). The MALDI-TOF-MS analysis of poly (ethyl acrylate) (PEA) prepared by using bpy as ligand showed the presence of halogen as the end group. On the contrary, when PMDETA was used as the ligand, the mass analysis showed no trace of this end group.  相似文献   
50.
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号