首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   2篇
化学   164篇
数学   5篇
物理学   15篇
  2020年   1篇
  2016年   3篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1974年   9篇
  1973年   4篇
  1972年   1篇
  1971年   3篇
  1970年   5篇
  1969年   1篇
  1968年   1篇
排序方式: 共有184条查询结果,搜索用时 31 毫秒
21.
A previous re-investigation of methionine has shown that the [C2H5S]+ ion is generated via rather complicated routes from the molecular ion. This has been interpreted as evidence against charge localisation in the fragmentation of the title compound. Deuterium labelling, high resolution mass measurements and metastable transitions have revealed, however, that the formation of the [C2H5S]+ ion is not in contradiction with the predicting capabilities of the concept of charge localisation.  相似文献   
22.
23.
Collisional activation spectra show that the [C9H11O] ion formed by loss of CH2OH from the title compound has rearranged to the protonated phenylacetone structure.  相似文献   
24.
25.
Comparison of the mass spectrum of γ-picoline with that of analogues, specifically deuterated in the methyl group, the ring or both, has shown that the molecular ion loses the α,β and methyl hydrogen atoms (ω-hydrogen') in the ratio 1.43: 1: 1. 13. The same trend is found for the elimination of HCN from the molecular ion. Moreover, a value of 1.52 is found for the isotope effect, expressing the favoured loss of H over D, irrespective of its position.  相似文献   
26.
Self-guided propagation of femtosecond laser pulses is studied for a converging-beam configuration. Channeling of the pulse energy through various gases is observed over distances well beyond the lens focal point, a fact that cannot be explained by the moving-focus model. The results are in good agreement with three-dimensional numerical simulations.  相似文献   
27.
In the liquid phase, water molecules form a disordered fluctuating network of intermolecular hydrogen bonds. Using both inter- and intramolecular vibrations as structural probes in ultrafast infrared spectroscopy, we demonstrate a two-stage structural response of this network to energy disposal: vibrational energy from individually excited water molecules is transferred to intermolecular modes, resulting in a sub-100 fs nuclear rearrangement that leaves the local hydrogen bonds weakened but unbroken. Subsequent energy delocalization over many molecules occurs on an approximately 1 ps time scale and is connected with the breaking of hydrogen bonds, resulting in a macroscopically heated liquid.  相似文献   
28.
The high affinity of Ag + ions for aromatic π donors and cyano groups is exploited in a novel MALDI-TOF mass spectrometric method for the identification of hydrogen-bonded assemblies. The interaction with the Ag+ ions—which, for example, can be complexed by two phenyl groups in a sandwich-type manner (see drawing on the right)—provides positively charged assemblies in a nondestructive way.  相似文献   
29.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   
30.
The mechanism of propene loss from protonated phenyl n-propyl ether and a series of mono-, di-, and trimethylphenyl n-propyl ethers has been examined by chemical ionization (CI) mass spectrometry in combination with tandem mass spectrometry experiments. The role of initial proton transfer to the oxygen atom and the aromatic ring, respectively, has been probed with the use of deuterated CI reagents, D2O, CD3OD, and CD3CN (given in order of increasing proton affinity), in combination with deuterium labeling of the β position of the n-propyl group or the phenyl ring. The metastable [M + D]+ ions of phenyl n-propyl ether—formed with D2O as the CI reagent—eliminate C3H5D and C3H6 in a ratio of 10:90, which indicates that the added deuteron is incorporated to a minor extent in the expelled neutral species. In the experiments with CD3OD as the CI reagent, the ratio between the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of phenyl n-propyl ether is 18:82, whereas the ratio becomes 27:73 with CD3CN as the reagent. A similar trend in the tendency to expel a propene molecule that contains the added deuteron is observed for the metastable [M + D]+ ions of phenyl n-propyl ether labeled at the β position of the alkyl group. Incorporation of a hydrogen atom that originates from the aromatic ring in the expelled propene molecule is of negligible importance as revealed by the minor loss of C3H5D from the metastable [M + H]+ ions of C6D5OCH2CH2CH3 irrespective of whether H2O, CH3OH, or CH3CN is the CI reagent. The combined results for the [M + D]+ ions of phenyl n-propyl ether and deuterium-labeled analogs are suggested to be in line with a model that assumes that propene loss occurs not only from species formed by deuteron transfer to the oxygen atom, but also from ions generated by deuteron transfer to the ring. This is substantiated by the results for the methyl-substituted ethers, which reveal that the position as well as the number of methyl groups bonded to the ring exert a marked effect on the relative importances of the losses of C3H5D and C3H6 from the metastable [M + D]+ ions of the unlabeled methyl-substituted species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号