首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   2篇
化学   164篇
数学   5篇
物理学   15篇
  2020年   1篇
  2016年   3篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   9篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1974年   9篇
  1973年   4篇
  1972年   1篇
  1971年   3篇
  1970年   5篇
  1969年   1篇
  1968年   1篇
排序方式: 共有184条查询结果,搜索用时 0 毫秒
181.
The intramolecular secondary isotope effects on the α-cleavage of deuterium-labelled N-methyldipentylamine radical cations have been studied as a function of ion lifetime by field ionization kinetics. The isotope effects observed are all normal and increase in magnitude with increasing ion lifetime, with the exception of the δ-labelled compound which shows an inverse effect (predominant loss of the labelled radical) at times shorter than 10?9 s, and a normal effect at longer times. The isotope effects reflect differences in zero-point energies of the transition states as well as the influence of slight reductions of isotope-dependent frequencies on the state sums–a statistical weight effect. The latter is particularly important at high ion energies and is the primary reason for the occurrence of the inverse isotope effect. The time dependence of the normal and inverse isotope effect is reproduced by QET/RRKM calculations.  相似文献   
182.
Triphenyltin compounds are widely introduced into the Dutch aquatic environment. To be able to detect them in environmental samples, the ionization methods of electron ionization, chemical ionization, fast atom bombardment, field desorption, thermospray and electrospray have been applied to triphenyltin acetate, chloride, fluoride and hydroxide to find out which of these methods is best suited to obtain molecular weight information on the intact molecules. For this purpose, field desorption is shown to be the most appropriate method giving, without fragmentation, molecular ion peaks, with the exception of triphenyltin hydroxide. The latter compound gives rise to the base peak at m/z 716, due to the formation of bis(triphenyltin)oxide. Field desorption tandem mass spectrometry, applied to the molecular ions, has shown that the main decomposition pathway corresponds to the loss of a phenyl radical. Subsequently, sediment and surface water samples from the Dutch inland water, without and with the use of clean-up procedures, have been analyzed by the application of field desorption in combination with tandem mass spectrometry. Within the limits of detection, no signals for the presence of triphenyltin compounds in these environmental samples has been found. Upon spiking these samples with triphenyltin acetate, chloride, fluoride and hydroxide, it has appeared that the covalently bonded non-aromatic substituent of the molecules is exchanged for hydroxyl.  相似文献   
183.
New experimental data on the rearrangement reaction of various phenoxyethyl halides to give [C6H6O] are presented and compared with previous studies so that a coherent picture of this process can be developed. By examining the metastable kinetic energy release for low energy decomposing molecular ions of the phenoxyethyl halides, it has been concluded that formation of [C6H6O] occurs by competitive 1,2 and 1,3 hydrogen shifts from the alkyl carbons to oxygen followed by a rate determining C? O bond cleavage. This is substantiated by the absence of a primary hydrogen isotope effect. For more highly activated molecular ions, a new mechanism comes into play as evidenced by the appearance of a small hydrogen isotope effect. It is postulated that this third mechanism involves transfer of the alkyl hydrogen to the ortho position of the ring by a rate determining 1,5 shift, followed by a 1,3 hydrogen shift from the ortho methylene group to oxygen and rapid C? O bond cleavage. This 1,3 hydrogen shift to oxygen appears to be ‘catalysed’ by the halogen atoms yielding phenol ions. No indications have been found for the formation of tautomeric 2,4-cyclohexadienone ions. Furthermore, highly activated molecular ions produce [C6H6O] which can undergo metastable decomposition to lose carbon monoxide. Kinetic energy release measurements for the latter reaction show that the majority of these [C6H6O]ions have been formed as phenol ions as well. These arguments are supported by energetic measurements and by comparisons with previous ion cyclotron resonance and collisional activation studies.  相似文献   
184.
Field ionization kinetic experiments in conjunction with deuterium labelling have been shown that the molecular ions of 3-phenylpropanol with lifetimes as short as 10?11s lose a molecule of water via a specific 1,3 elimination. At times > 10?11s two distinct hydrogen interchange processes in the molecular ions appear to complete with this reaction. One of the intechange processes involves the benzylic and hydroxylic hydrogen atoms and starts to complete with the elimination of water at shorter molecular ion lifetimes than the other interchange process in which the ortho hydrogen atoms also participate. Decomposing [C9H10] ions generated by elimination of water from the molecular ions of 3-phenylpropanol or by direct ionization of various isomeric C9H10 compounds could not be distinguished adequately, illustrating isomerization either to a common ion structure or to a set of ions with rapidly interconverting structures. A consideration of the energetics of the elimination of water from 3-phenylpropanol suggests that at threshold energies 1-phenylpropene or indane type structures can be formed. Arguments for the latter have been obtained from the observation that a labile fluorine atom is present in the [M – H2O] ions generated from 3-pentafluoro-phenylpropanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号