排序方式: 共有55条查询结果,搜索用时 0 毫秒
41.
42.
43.
44.
45.
46.
47.
Identification of isomeric flavonoid glucuronides in urine and plasma by metal complexation and LC-ESI-MS/MS 总被引:1,自引:0,他引:1
Noncovalent complexes were used for structural determination and isomer differentiation of flavonoid glucuronides. Several flavonoid glucuronides including naringenin-7-O-glucuronide, synthesized here for the first time, were used as test compounds. Electrospray ionization quadrupole ion trap mass spectrometry with collision-induced dissociation (CID) was used to analyze complexes of the form [Co(II) (L-H) (Aux)]+ and [Co(II) (L-H) (Aux)2]+, in which L is the flavonoid glucuronide and Aux is a phenanthroline-based ligand. These complexes yielded characteristic fragmentation patterns that facilitated assignment of the substitution position of the glucuronides. The methods were adapted to liquid chromatography/tandem mass spectrometry (LC-MS/MS) with postcolumn cobalt complexation and were tested on extracts from biological fluids. The metabolites naringenin-7-O-glucuronide and naringenin-4'-O-glucuronide were detected in human urine following the consumption of grapefruit juice. Isomeric quercetin glucuronides were identified and differentiated after spiking rat plasma at the 1 microM level, proving that the new methods are effective at biologically relevant concentrations. 相似文献
48.
Quantum Monte Carlo calculations of the first-row atoms Li-Ne and their singly positively charged ions are reported. Multideterminant-Jastrow-backflow trial wave functions are used which recover more than 98% of the correlation energy at the variational Monte Carlo level and more than 99% of the correlation energy at the diffusion Monte Carlo level for both the atoms and ions. We obtain the first ionization potentials to chemical accuracy. We also report scalar relativistic corrections to the energies, mass-polarization terms, and one- and two-electron expectation values. 相似文献
49.
GI Griffiths AJ Misquitta AD Fortes CJ Pickard RJ Needs 《The Journal of chemical physics》2012,137(6):064506
A combination of first-principles density functional theory calculations and a search over structures is used to predict the stability of a proton-transfer modification of ammonia monohydrate with space group P4∕nmm. The phase diagram is calculated with the Perdew-Burke-Ernzerhof (PBE) density functional, and the effects of a semi-empirical dispersion correction, zero point motion, and finite temperature are investigated. Comparison with MP2 and coupled cluster calculations shows that the PBE functional over-stabilizes proton transfer phases because too much electronic charge moves with the proton. This over-binding is partially corrected by using the PBE0 hybrid exchange-correlation functional, which increases the enthalpy of P4∕nmm by about 0.6 eV per formula unit relative to phase I of ammonia monohydrate and shifts the transition to the proton transfer phase from the PBE pressure of 2.8 GPa to about 10 GPa. This is consistent with experiment as proton transfer phases have not been observed at pressures up to ~9 GPa, while higher pressures have not yet been explored experimentally. 相似文献
50.