首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   20篇
  国内免费   1篇
化学   455篇
晶体学   5篇
力学   11篇
数学   30篇
物理学   209篇
  2023年   7篇
  2022年   21篇
  2021年   15篇
  2020年   16篇
  2019年   21篇
  2018年   16篇
  2017年   23篇
  2016年   27篇
  2015年   12篇
  2014年   17篇
  2013年   57篇
  2012年   25篇
  2011年   31篇
  2010年   26篇
  2009年   26篇
  2008年   25篇
  2007年   28篇
  2006年   34篇
  2005年   25篇
  2004年   20篇
  2003年   12篇
  2002年   17篇
  2001年   11篇
  2000年   8篇
  1999年   12篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1991年   5篇
  1989年   10篇
  1988年   4篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   7篇
  1982年   15篇
  1981年   13篇
  1980年   9篇
  1979年   10篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   9篇
  1963年   3篇
排序方式: 共有710条查询结果,搜索用时 31 毫秒
701.
Well-aligned arrays of CdS-ZnO composite nanorods were grown on indium tin oxide substrates. ZnO nanorods, deposited by a low temperature aqueous chemical growth technique, were dip coated with CdS. The CdS-ZnO nanorods were polycrystalline as confirmed from the low angle X-rays diffraction study. Photon to current conversion efficiency of CdS-ZnO composite nanorod was observed to be higher than that of CdS. In the micro-Raman spectrum, we observed longitudinal optical modes of CdS and ZnO showing their co-existence. The appealing application of CdS-ZnO nanorod as a visible photocatalyst was demonstrated and the possible mechanism was discussed.  相似文献   
702.
Quasielastic scattering angular distributions have been measured for the 7Be + 9Be system at E lab = 17 , 19 and 21MeV in the angular range $ \theta_{{cm}}^{}$ = 24° - 57° . An optical model (OM) analysis of these data has been carried out in order to extract optical potential parameters and reaction cross-sections. One-proton stripping cross-sections were also measured for this system at E lab = 19 and 21MeV. These transfer angular-distribution data were compared with the finite-range distorted-wave Born approximation (FRDWBA) calculations. For the 7Li + 9Be system quasielastic scattering angular distributions were measured and emitted light charged particles were detected at E lab = 15.75 , 24.00 and 30.00MeV in the angular range $ \theta_{{cm}}^{}$ = 7° - 70° . Fusion cross-sections were obtained by reproducing the measured $ \alpha$ -evaporation spectra from the compound nucleus at backward angles with the statistical model calculations. The ratios of the experimental fusion cross-sections to the total reaction cross-sections (obtained from OM analysis) were found to be small. This result suggests that the break-up process has a strong influence on the fusion process leading to a reduction in the fusion cross-section.  相似文献   
703.
This paper reports that defect driven magnetism can be obtained at room temperature by optimizing metal ion concentration in bismuth ferrite (BFO) following our novel slow step solid state sintering route. We observed a clean signature of enhanced multiferroic behavior in Gd doped bismuth ferrite (Gd-BFO) bulk ceramics at room temperature (RT). Bismuth rich iron deficient Gd-BFO ceramics were prepared by solid state route through slow step sintering schedule at 850 °C. At particular composition, (Bi1.2Gd0.1Fe0.8O3), this materials completely transform from rhombohedral R3c to orthorhombic Pn21a space group. We emphasized that excess bismuth is expected to act as point defects and occupy interstitials positions, which in turn interact by oxygen vacancies. These defects are likely to promote defect driven ferromagnetism in BFO system. Incorporation of Gd in presence of excess bismuth in BFO enhanced both spin and electric polarization at room temperature. We also infer that Gd substitution in BFO is likely to suppress spiral spin modulation, which also favors ferromagnetism in Gd-BFO.  相似文献   
704.
Andrographolide, the principal secondary metabolite of Andrographis paniculata, displays a wide spectrum of medicinal activities. The content of andrographolide varies significantly in the species collected from different geographical regions. Therefore, this study aims at investigating the role of different abiotic factors and selecting suitable sites for the cultivation of A. paniculata with high andrographolide content using a multilayer perceptron artificial neural network (MLP-ANN) approach. A total of 150 accessions of A. paniculata collected from different regions of Odisha and West Bengal in eastern India showed a variation in andrographolide content in the range of 0.28–5.45% on a dry weight basis. The MLP-ANN was trained using climatic factors and soil nutrients as the input layer and the andrographolide content as the output layer. The best topological ANN architecture, consisting of 14 input neurons, 12 hidden neurons, and 1 output neuron, could predict the andrographolide content with 90% accuracy. The developed ANN model showed good predictive performance with a correlation coefficient (R2) of 0.9716 and a root-mean-square error (RMSE) of 0.18. The global sensitivity analysis revealed nitrogen followed by phosphorus and potassium as the predominant input variables influencing the andrographolide content. The andrographolide content could be increased from 3.38% to 4.90% by optimizing these sensitive factors. The result showed that the ANN approach is reliable for the prediction of suitable sites for the optimum andrographolide yield in A. paniculata.  相似文献   
705.
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.  相似文献   
706.
Magnolia champaca (L.) Baill. ex Pierre of family Magnoliaceae, is a perennial tree with aromatic, ethnobotanical, and medicinal uses. The M. champaca leaf is reported to have a myriad of therapeutic activities, however, there are limited reports available on the chemical composition of the leaf essential oil of M. champaca. The present study explored the variation in the yield and chemical composition of leaf essential oil isolated from 52 accessions of M. champaca. Through hydrodistillation, essential oil yield was obtained, varied in the range of 0.06 ± 0.003% and 0.31 ± 0.015% (v/w) on a fresh weight basis. GC-MS analysis identified a total of 65 phytoconstituents accounting for 90.23 to 98.90% of the total oil. Sesquiterpene hydrocarbons (52.83 to 65.63%) constituted the major fraction followed by sesquiterpene alcohols (14.71 to 22.45%). The essential oils were found to be rich in β-elemene (6.64 to 38.80%), γ-muurolene (4.63 to 22.50%), and β-caryophyllene (1.10 to 20.74%). Chemometrics analyses such as PCA, PLS-DA, sPLS-DA, and cluster analyses such as hierarchical clustering, i.e., dendrogram and partitional clustering, i.e., K-means classified the essential oils of M. champaca populations into three different chemotypes: chemotype I (β-elemene), chemotype II (γ-muurolene) and chemotype III (β-caryophyllene). The chemical polymorphism analyzed in the studied populations would facilitate the selection of chemotypes with specific compounds. The chemotypes identified in the M. champaca populations could be developed as promising bio-resources for conservation and pharmaceutical application and further improvement of the taxa.  相似文献   
707.
A practical and efficient protocol for oxidative cleavage of olefinic bonds especially in arylated olefins has been demonstrated. Herein, an oxo[5,10,15-tris(4-nitrophenyl)corrolato]vanadium (IV) complex (cat.), has been successfully synthesized and the existence of two tautomeric forms of this complex in solution has been established. Oxo[5,10,15-tris(4-nitrophenyl)corrolato]vanadium (IV) (cat.) in the presence of H2O2 cleaves olefinic bonds to yield the corresponding aldehyde compounds. In general, a high valent, oxo-(porphyrinoid)-metal complex catalyzes the epoxide formation reactions, however, in the present case, we have observed the exclusive formation of aldehydes. The reaction offered aryl aldehydes with good yields and excellent selectivity. A mechanism was also proposed for these catalysis reactions.  相似文献   
708.
Industrial waste locks are used as raw materials to reduce harmful effects on the environment and improve environmental performance. Marble clay powder can be used as a filling aid and can fill voids in concrete structures. This article will show you how to use a maximum natural sand alternative in concrete with marble powder and quarry dust. The challenge of the 21st century is to change to a new form that can support the natural system. This necessitates a radical rethinking of how to give the community infrastructure and housing. Making a concerted effort to develop novel, innovative, and alternative construction materials may be necessary. Jungles of concrete around cause's impact on the Environment and it would result in climate change. Mankind must avoid the use of things that are detrimental to the environment. So in this paper, it is decided to address the issue by adopting the use of the green concrete concept which is environmentally friendly. Green concrete is concrete made up using industrial wastes such as marble powder, quarry dust, wood ash, paper pulp, etc. Green concrete, which is capable of sustainable development, helps to reduce the consumption of natural resources, energy use, and environmental pollution. Green concrete is more cost-effective than ordinary concrete and reduces the cost of resultant concrete by 14%–20%. It is also observed that the alkali-aggregate reaction and sulfate attack resistance of concrete are both significantly improved. Green concrete is a useful tool for lowering environmental pollution and enhancing concrete's resistance to harsh conditions. All stages of infrastructure construction and rehabilitation will follow this trend of using new cement and techniques. Green concrete's adaptability and its performance derivatives will meet a variety of future needs.  相似文献   
709.
S. K. Nayak  P. Jena 《ChemInform》1999,30(16):no-no
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
710.
The spin-orbit interaction (SOI) of light generated by tight focusing in optical tweezers is regularly employed in generating angular momentum - both spin and orbital - the effects being extensively observed in trapped mesoscopic particles. Specifically, the transverse spin angular momentum (TSAM), which arises due to the longitudinal component of the electromagnetic field generated by tight focusing is of special interest, both in terms of fundamental studies and associated applications. This study provides an effective and optimal strategy for generating TSAM in optical tweezers by tightly focusing first-order radially and azimuthally polarized vector beams with no intrinsic angular momentum (AM) into a refractive index stratified medium. The choice of such input fields ensures that the longitudinal spin angular momentum (LSAM) arising from the electric (magnetic) field for the radial (azimuthal) polarization is zero. As a result, the effects of the electric and magnetic TSAM are exclusively observed separately in the case of input first-order radially and azimuthally polarized vector beams on single optically trapped birefringent particles. This research opens up new and simple avenues for exotic and complex particle manipulation in optical tweezers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号