首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   23篇
  国内免费   3篇
化学   496篇
晶体学   8篇
力学   32篇
数学   87篇
物理学   122篇
  2022年   49篇
  2021年   29篇
  2020年   26篇
  2019年   18篇
  2018年   30篇
  2017年   23篇
  2016年   35篇
  2015年   15篇
  2014年   12篇
  2013年   55篇
  2012年   37篇
  2011年   37篇
  2010年   25篇
  2009年   32篇
  2008年   29篇
  2007年   22篇
  2006年   22篇
  2005年   17篇
  2004年   10篇
  2003年   19篇
  2002年   15篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   11篇
  1997年   14篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   5篇
  1986年   4篇
  1985年   7篇
  1984年   4篇
  1983年   9篇
  1982年   3篇
  1981年   9篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1970年   3篇
  1961年   3篇
排序方式: 共有745条查询结果,搜索用时 15 毫秒
41.
A combination of tetrachlorosilane and potassium cyanide (in situ trichlorosilyl cyanide) was found to work efficiently for hydrocyanation of ketones to afford the corresponding cyanohydrins in high yield under mild conditions.  相似文献   
42.
The synthesis of functionalized cyclic homoallylsilanes 5 and 6 was described starting from functional cycloalkenols 1 and 2, in which the addition of silylcuprate to the functional acetates 3 and 4 were used as the key reaction step.  相似文献   
43.
H.A. Ahmed  G.R. Saad 《Liquid crystals》2013,40(12):1765-1772
Four new groups of the di-fluoro-substituted 4-(2′-(or 3′)-fluoro phenylazo)-2-(or 3-) fluoro phenyl-4″-alkoxyphenylazo benzoates (InIVn) were prepared and investigated for their mesophase behaviour. An alkoxy group of variable chain length (n = 6, 10 and 14 carbons) is attached to the terminal phenylazo benzoate moiety, and two lateral fluoro substituents are attached individually with different orientations to the other two adjacent rings. The molecular structures of the prepared compounds were confirmed by Fourier transform infrared spectroscopy and 1H NMR spectroscopy. The study aims to investigate the steric effect of the spatial orientation and relative positions of the two lateral fluorine atoms on the mesomorphic properties in their pure states. The mesophase behaviour was investigated via differential scanning calorimetry and mesophases were identified by polarised light microscopy. The investigation shows that these compounds exhibit high enantiotropic mesophases (SmC and N) and broad mesophase temperature range. The type and stability of the mesophase depends on the length of the terminal alkoxy chain and the position the two fluoro substituents. A comparison between these investigated compounds with their corresponding three-ring analogues was discussed.  相似文献   
44.
Boronic acids (R‐B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R‐B(OH)3?) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9‐B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid‐state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks.  相似文献   
45.
Journal of Radioanalytical and Nuclear Chemistry - Four different grain size fractions (0.2–0.5, 0.5–1, 1–1.8, 1.8–2 mm) of red brick and cement mortar samples at...  相似文献   
46.

Although cellulose nanomaterials have promising properties and performance in a wide application space, one hinderance to their wide scale industrial application has been associated with their economics of dewatering and drying and the ability to redisperse them back into suspension without introducing agglomerates or lose of yield. The present work investigates the dewatering of aqueous suspensions of cellulose nanofibrils (CNFs) using ultrasound as a potentially low-cost, non-thermal, and scalable alternative to traditional heat-based drying methods such as spray drying. Specifically, we use vibrating mesh transducers to develop a direct-contact mode ultrasonic dewatering platform to remove water from CNF suspensions in a continuous manner. We demonstrate that the degree of dewatering is modulated by the number of transducers, their spatial configuration, and the flow rate of the CNF suspension. Water removal of up to 72 wt.% is achieved, corresponding to a final CNF concentration of 11 wt.% in 30 min using a two-transducer configuration. To evaluate the redispersibility of the dewatered CNF material, we use a microscopic analysis to quantify the morphology of the redispersed CNF suspension. By developing a custom software pipeline to automate image analysis, we compare the histograms of the dimensions of the redispersed dewatered fibrils with the original CNF samples and observe no significant difference, suggesting that no agglomeration is induced due to ultrasonic dewatering. We also perform SEM analysis to evaluate the nanoscale morphology of these fibrils showing a width range of 20 nm–4 um. We estimate that this ultrasound dewatering technique is also energy-efficient, consuming up to 36% less energy than the enthalpy of evaporation per kilogram of water. Together with the inexpensive cost of transducers (<?$1), the potential for scaling up in parallel flow configurations, and excellent redispersion of the dewatered CNFs, our work offers a proof-of-concept of a sustainable CNF dewatering system, that addresses the shortcomings of existing techniques.

  相似文献   
47.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   
48.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
49.
An innovative strategy is proposed to synthesize single-crystal nanowires (NWs) of the Al3+ dicarboxylate MIL-69(Al) MOF by using graphene oxide nanoscrolls as structure-directing agents. MIL-69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 μm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM-HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL-69(Al) NWs involving size-confinement and templating effects. The formation of MIL-69(Al) seeds and the self-scroll of GO sheets followed by the anisotropic growth of MIL-69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.  相似文献   
50.
Abstract

5-fluorouracil (5-FU) refers to a fluorinated pyrimidine analogue that has been widely used as an anticancer agent for colon, head, and neck cancers. Detection of 5-FU and its metabolites; 5-fluorouridine and 5-fluoro-2-deoxyuridine in biological samples allows optimization of pharmacotherapy and encourages fundamental investigations of this medication. The development of accurate and reliable sample preparation, as well as analytical methods, is critical to isolate targeted analytes from complex matrices, apart from increasing detection sensitivity of analytes. With that, this paper presents a review of prior studies pertaining to chromatographic and electrophoretic methods that focused on the analysis of 5-FU and its metabolites in biological matrices such as plasma and urine. This paper concentrates on HPLC, GC and CE systems, which are the most commonly used strategies for analytical separation of 5-FU and its metabolites from samples. Detection of these antineoplastic agents at trace level demands highly sensitive and selective analytical methodologies. Application of these analytical techniques to biological matrices is reviewed with a focus on method development strategies, including types of mobile phases and background electrolytes employed in LC and CE systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号