首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   4篇
  国内免费   1篇
化学   59篇
物理学   24篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   5篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  1999年   1篇
  1984年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
51.
Hydrogen boride (HB) sheets are two-dimensional materials comprising a negatively charged hexagonal boron network and positively charged hydrogen atoms with a stoichiometric ratio of 1:1. Herein, we report the spontaneous formation of highly dispersed Ni nanoclusters on HB sheets. The spontaneous reduction reaction of Ni ions by the HB sheets was monitored by in-situ measurements with an ultraviolet-visible spectrometer. Acetonitrile solutions of Ni complexes and acetonitrile dispersions of the HB sheets were mixed in several molar ratios (the HB:Ni molar ratio was varied from 100:0.5 to 100:20), and the changes in the absorbance were measured over time. In all cases, the results suggest that Ni metal clusters grow on the HB sheets, considering the increase in absorbance with time. The absorbance peak position shifts to the higher wavelength as the Ni ion concentration increases. Transmission electron microscopy images of the post-reaction products indicate the formation of Ni nanoclusters, with sizes of a few nanometers, on the HB sheets, regardless of the preparation conditions. These highly dispersed Ni nanoclusters supported on HB sheets will be used for catalytic and plasmonic applications and as hydrogen storage materials.  相似文献   
52.
The EF-ring of ciguatoxin 3C, a marine toxin from the dinoflagellate Gambierdiscus toxicus, was stereoselectively synthesized by iterative use of a cyclic ether formation process based on chirality-transferring Ireland-Claisen rearrangement and ring-closing olefin metathesis.  相似文献   
53.
Gold nanoparticles with an average diameter of 11 nm (Au(39000)) were prepared in an SDS aqueous solution. A 80-microm liquid droplet (microdroplet) of the solution was ejected into the atmosphere from a microdroplet nozzle. Structural changes of the gold nanoparticles in the microdroplet, after they were irradiated with a focused single-nanosecond laser pulse at the wavelength of 532 nm, were studied by transmission electron microscopy (TEM) and optical absorption spectroscopy. It was revealed that the gold nanoparticles are fragmented into small particles and then the small fragments aggregate with each other. The aggregation was found to be terminated 100 micros after the laser-pulse excitation.  相似文献   
54.
The repeating guest units of poly-(R)- 2 were selectively encapsulated by the self-assembled capsule poly- 1 possessing eight polymer side chains to form the supramolecular graft polymer (poly- 1 )n⋅poly-(R)- 2 . The encapsulation of the guest units was confirmed by 1H NMR spectroscopy and the DOSY technique. The hydrodynamic radius of the graft polymer structure was greatly increased upon the complexation of poly- 1 . The supramolecular graft polymer (poly- 1 )n⋅poly-(R)- 2 was stably formed in the 1:1 host–guest ratio, which increased the glass transition temperature by more than 10 °C compared to that of poly- 1 . AFM visualized that (poly- 1 )n⋅poly-(R)- 2 formed the networked structure on mica. The (poly- 1 )n⋅poly-(R)- 2 gelled in 1,1,2,2-tetrachloroethane, which led to fabrication of distinct viscoelastic materials that demonstrated self-healing behavior in a tensile test.  相似文献   
55.
Metal-mediated base pairs (MMBPs) formed by natural or artificial nucleobases have recently been developed. The metal ions can be aligned linearly in a duplex by MMBP formation. The development of a three- or more-metal-coordinated MMBPs has the potential to improve the conductivity and enable the design of metal ion architectures in a duplex. This study aimed to develop artificial self-bases coordinated by three linearly aligned AgI ions within an MMBP. Thus, artificial nucleic acids with a 1,3,9-triaza-2-oxophenoxazine (9-TAP) nucleobase were designed and synthesized. In a DNA/DNA duplex, self-base pairs of 9-TAP could form highly stable MMBPs with three AgI ions. Nine equivalents of AgI led to the formation of three consecutive 9-TAP self-base pairs with extremely high stability. The complex structures of 9-TAP MMBPs were determined by using electrospray ionization mass spectrometry and UV titration experiments. Highly stable self-9-TAP MMBPs with three AgI ions are expected to be applicable to new DNA nanotechnologies.  相似文献   
56.
Suzuki–Miyaura coupling reaction of BrC6H4-X-C6H4Br 1 (X=CH2, CO, N-Bu, O, S, SO, and SO2) with arylboronic acid 2 was investigated in the presence of tBu3PPd precatalyst and CsF/[18]crown-6 as a base to establish whether or not the Pd catalyst can undergo catalyst transfer on these functional groups. In the reaction of 1 (X=CH2, CO, N-Bu, O, and SO2) with 2 , aryl-disubstituted product 3 (Ar-C6H4-X-C6H4-Ar) was exclusively obtained, indicating that the Pd catalyst undergoes catalyst transfer on these functional groups. On the other hand, the reaction of 1 e (X=S) and 1 f (X=SO) with 2 afforded only aryl-monosubstituted product 4 (Ar-C6H4-X-C6H4-Br) and a mixture of 3 and 4 , respectively, indicating that S and SO interfere with intramolecular catalyst transfer. Furthermore, we found that Suzuki–Miyaura polycondensation of 1 (X=CH2, CO, N-Bu, O, and SO2) and phenylenediboronic acid 5 in the presence of tBu3PPd precatalyst afforded high-molecular-weight polymer even when excess 1 was used. The polymers obtained from 1 (X=CH2, N-Bu, and O) and 5 turned out to be cyclic.  相似文献   
57.
The oxidation states of Al-oxide layer and the leakage current density in coercive differential spin tunneling junctions Co/Al-oxide/Co have been investigated in order to clear the mechanism of the increasing resistance change. X-ray photoelectron spectroscopy analysis shows that the resistance change increases with decreasing unoxidized Al, which can be qualitatively explained by using first-principle band calculation based on linear-muffin-tin-orbital atomic-sphere-approximation method. The resistance change decreases with increasing leakage current density, which originates from Schottky effect. Reduction of unoxidized Al and leakage current density originating from Schottky effect is required to obtain the large resistance change in spin tunneling junctions.  相似文献   
58.
We conducted an inclusive missing-mass spectroscopy of 122Sn (d, 3He) reaction near the π¯ emission threshold at an incident energy of T d = 250 MeV/nucleon. The experiment sets its goals to the research and development of the high precision spectroscopy of pionic atoms at the RI beam factory (RIBF) of RIKEN, which precedes a new project, pionic atom factory project (piAF), to observe pionic atoms systematically. Here, we report the preliminary results of the pilot experiment.  相似文献   
59.
We report a new synthetic method to construct supramolecular A8Bn (n=1, 2, 4) miktoarm star copolymers by host-guest complexation between a resorcinarene-based coordination capsule possessing eight polystyrene chains and 4,4-diacetoxybiphenyl guest molecules that retain one, two or four polymethyl acrylate chains. The formation of the supramolecular A8Bn (n=1, 2, 4) miktoarm star copolymers was confirmed by dynamic light scattering (DLS), size-exclusion chromatography (SEC), and diffusion-ordered NMR spectroscopy (DOSY). Differential scanning calorimetry (DSC) measurements revealed that the miktoarm copolymers were phase-separated in the bulk. The micro-Brownian motion of the A8B4 structure was markedly enhanced in the bulk due to a weak segregation interaction between the immiscible arms.  相似文献   
60.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号