首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   43篇
  国内免费   1篇
化学   445篇
晶体学   2篇
力学   5篇
数学   29篇
物理学   67篇
  2024年   1篇
  2023年   9篇
  2022年   13篇
  2021年   10篇
  2020年   31篇
  2019年   10篇
  2018年   5篇
  2017年   4篇
  2016年   29篇
  2015年   27篇
  2014年   19篇
  2013年   27篇
  2012年   36篇
  2011年   37篇
  2010年   27篇
  2009年   18篇
  2008年   44篇
  2007年   36篇
  2006年   34篇
  2005年   36篇
  2004年   17篇
  2003年   12篇
  2002年   10篇
  2001年   5篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1975年   1篇
  1973年   1篇
  1943年   2篇
  1938年   2篇
  1935年   1篇
  1934年   1篇
  1933年   5篇
排序方式: 共有548条查询结果,搜索用时 15 毫秒
451.
452.
453.
454.
The realization that modulated light pulses can be transported in a confined fashion over long distances within a structure that comprises a controlled spatial distribution of the refractive index n—as in optical fibres and waveguides—has, without doubt, underpinned the telecommunications revolution witnessed during the 20th century. The refractive index n, quantifying how light propagates in a given medium, as a consequence, has become one of the most important materials properties in designing photonics products. The other key characteristic for most optical and photonic applications is the amount of light that is absorbed by a material, expressed as the extinction coefficient κ. Although a range of organic/inorganic hybrid materials have been advanced with tunable refractive index, only a few systems combine a high n, sufficiently low κ and straightforward sample preparation to allow simple fabrication of highly transparent, low‐loss structures. Here, we present a hybrid material that can be readily produced in water via a one‐pot synthesis directly from commercially available, low‐cost precursors. Moreover, our hybrid material can be solution‐processed, yielding systems of an extinction coefficient <0.01, and a refractive index, which can be controlled to adopt values between 1.5 to at least 2.1. Unprecedentedly, simple post‐deposition procedures such as thermal annealing or irradiation with high‐intensity UV‐light allow adjusting n also after film fabrication, offering an exceptional degree of freedom in designing and tailoring also more complex photonic architectures or planar wave‐guides, for example, through creation of in‐plane refractive index patterns. As a proof‐of‐concept, we demonstrate fabrication of waveguides based on local heating. The versatility of our materials is further illustrated by the production of lenses and dielectric filters of ~100% reflectivity in a given wavelength regime. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 000: 000–000, 2011  相似文献   
455.
The first observation that PBBTPD, a low bandgap, ambipolar conjugated donor-acceptor (DA) polymer based on benzobisthiadiazole (BBT), possesses an open-shell singlet ground state as well as a thermally accessible triplet state is described. Similarly, interesting electronic behavior in semiconducting organic DA oligomers based on BBT is also observed. Theoretical predictions have suggested that such behavior is due to the biradicaloid character of BBT and we provide experimental evidence indicating that these predictions are correct. Furthermore, the open shell character strengthens as the conjugation length increases, as observed in the BBT-based polymer, PBBTPD. We show that this biradicaloid structure is observed in each BBT moiety along the chain and that therefore PBBTPD is in fact a polyradicaloid. This observation will most likely aid in the development of better n-type polymeric acceptors for organic semiconductor applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 287–293  相似文献   
456.
457.
458.
We have prepared a simple star‐shaped oligo(aniline) ( TDPB ) and characterised it in detail by MALDI‐TOF MS, UV/Vis/NIR spectroscopy, time‐dependent DFT, cyclic voltammetry and EPR spectroscopy. TDPB is part of an underdeveloped class of π‐conjugated molecules with great potential for organic electronics, display and sensor applications. It is redox active and reacts with acids to form radical cations. Acid‐doped TDPB shows behaviour similar to discotic liquid crystals, with X‐ray scattering investigations revealing columnar self‐assembled arrays. The combination of unpaired electrons and supramolecular stacking suggests that star‐shaped oligo(aniline)s like TDPB have the potential to form conducting nanowires and organic magnetic materials.  相似文献   
459.
We present detailed studies on the covalent adsorption of molecular oxygen and atomic hydrogen on the hexagonal boron nitride (h-BN) nanomesh on Rh(111). The functionalization of this two-dimensional (2D) material was investigated under ultra-high vacuum conditions using synchrotron radiation-based in situ high-resolution X-ray photoelectron spectroscopy, temperature-programmed X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. We are able to provide a deep insight into the adsorption behavior and thermal stability of oxygen and hydrogen on h-BN/Rh(111). Oxygen functionalization was achieved via a supersonic molecular beam while hydrogen functionalization was realized using an atomic hydrogen source. Adsorption of the respective species was observed to occur selectively in the pores of h-BN leading to spatially defined modification of the 2D layer. The adsorption of the observed molecular oxygen species was found to be an activated process that requires high-energy oxygen molecules. Upon heating to 700 K, oxygen functionalization was observed to be almost reversible except for small amounts of boron oxides evolving due to the reaction of oxygen with the 2D material. Hydrogen functionalization of h-BN/Rh(111) was fully reversed upon heating to about 640 K.  相似文献   
460.
Iodine and bromine species participate in key atmospheric reactions including the formation of cloud condensation nuclei and ozone depletion. We present a novel method coupling a high-performance liquid chromatography with ion chromatography and inductively coupled plasma mass spectrometry, which allows the determination of iodine (I) and bromine (Br) species (IO 3 ? , I?, Br?, BrO 3 ? ) at the picogram-per-gram levels presents in Antarctic ice. Chromatographic separation was achieved using an IONPAC® AS16 Analytical Column with NaOH as eluent. Detection limits for I and Br species were 5 to 9 pg g?1 with an uncertainty of less than 2.5% for all considered species. Inorganic iodine and bromine species have been determined in Antarctic ice core samples, with concentrations close to the detection limits for iodine species, and approximately 150 pg g?1 for Br?. Although iodate (IO 3 ? ) is the most abundant iodine species in the atmosphere, only the much rarer iodide (I?) species was present in Antarctic Holocene ice. Bromine was found to be present in Antarctic ice as Br?.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号