首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   11篇
  国内免费   5篇
化学   211篇
晶体学   2篇
数学   27篇
物理学   31篇
  2022年   5篇
  2021年   4篇
  2020年   20篇
  2019年   10篇
  2018年   19篇
  2017年   11篇
  2016年   22篇
  2015年   12篇
  2014年   16篇
  2013年   32篇
  2012年   26篇
  2011年   24篇
  2010年   16篇
  2009年   16篇
  2008年   9篇
  2007年   9篇
  2006年   2篇
  2005年   5篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1976年   2篇
排序方式: 共有271条查询结果,搜索用时 31 毫秒
41.
A highly selective electrochemical sensor was fabricated based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4 NPs). The nanocomposite has attractive properties such as high surface-to-volume ratio and good electrocatalytic activity towards the drugs acetaminophen (AC), epinephrine (EP), and melatonin (MT), best at working voltages of 0.35, 0.09 and 0.55 V (vs. Ag/AgCl), respectively. The linear ranges (and detection limits) are 6.5–135 (0.4) μmol L?1 for AC, 5–100 (0.7) μmol L?1 for EP, and 6.5–145 (3) μmol L?1 for MT.
Graphical abstract A novel electrochemical sensor based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4) for the simultaneous detection of the acetaminophen, epinephrine and melatonin was fabricated
  相似文献   
42.
43.
In this study, cyclic voltammetry and differential pulse voltammetry were used to determine the electrochemical properties and concentration of naproxen in pharmaceutical formulation and human serum samples by using a carbon paste electrode modified with activated carbon nanoparticles. Optimum conditions were obtained at an electrode with 0.005 g activated carbon nanoparticles in a phosphate buffer solution of pH 6 as a supporting electrolyte. Linear calibration curves were obtained in the range of 0.1–120 μM, and the detection limit of naproxen determined was 0.0234 μM. The modified electrode shows good selectivity for naproxen in the presence of some organic and inorganic interferences and very good precision in real samples. Finally, naproxen was measured in the presence of acetaminophen.  相似文献   
44.
The new chlorinated peptides sintokamides A to E (1-5) have been isolated from specimens of the marine sponge Dysidea sp. collected in Indonesia. Their structures were elucidated by a combination of spectroscopic and single-crystal X-ray diffraction analyses. Sintokamide A (1) is an inhibitor of N-terminus transactivation of the androgen receptor in prostate cancer cells.  相似文献   
45.
In this paper, we investigate some stability results concerning the k-cubic functional equation f(kx + y) + f(kx?y) = kf(x + y) + kf(x?y) + 2k(k2?1)f(x) in the intuitionistic fuzzy n-normed spaces.  相似文献   
46.
47.
The complexation reaction between Tl+, Ag+ and Pb2+ cations with 2,6-di(furyl-2yl)-4-(4-methoxy phenyl)pyridine as a new synthesis ligand in acetonitrile (ACN)–H2O and methanol (MeOH)–H2O binary solutions has been studied at different temperatures using conductometric method. The conductometric data show that the stoichiometry of the complexes is 1: 1 [M: L] and the stability constant of complexes changes with the binary solutions identity. Also, the structure of the resulting 1: 1 complexes was optimized using the LanL2dz basis set at the B3LYP level of theory using GAUSSIAN03 software. The results show that the change of logKf for (DFMP.Pb)2+ and (DFMP.Ag)+ complexes with the mole ratio of acetonitrile and for (DFMP.Ag)+ and (DFMP.Tl)+ complexes with the mole ratio of methanol have a linear behavior, while the change of logKf of (DFMP.Tl)+complex in ACN–H2O binary solutions (with a minimum in XACN = 0.5) and (DFMP.Ag)+ complex in MeOH–H2O binary solutions (with a minimum in XMeOH = 0.75) show a non-linear behavior. The selectivity order of DFMP ligand for these cations in mol % CAN = 25 and 75 obtain Tl+ > Pb2+ > Ag+ but in mol % CAN = 50, the selectivity order observe Pb2+ > Tl+ > Ag+. Also, this selectivity sequence of DFMP in MeOH–H2O (mol % MeOH = 75 and 100) and (mol % MeOH = 50) is obtained Pb2+ > Ag+ and Tl+ > Ag+ > Pb2+ respectively. The values of thermodynamic parameters show that these values are influenced by the nature and the composition of binary solution. In all cases, the resulting complexes are enthalpy stabilized and entropy destabilized. The TΔSC° versus ΔHC° plot of all obtained thermodynamic data shows a fairly good linear correlation which indicates the existence of enthalpy-entropy compensation in the complexation reactions.  相似文献   
48.
49.
Dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography-diode array detection (HPLC-DAD) has been applied to the extraction and determination of EDTA in sediments and water samples. The effect of extraction, nature and volume of disperser solvent, pH value of sample solution, extraction time and extraction temperature were investigated. Under the optimal conditions the analytical range of EDTA was from 3.0 to 50.0 μg L?1 with a correlation coefficient of 0.9982 and a detection limit of 1.7 μg L?1. The relative standard deviation (RSD) was less than 5.4% (n?=?5), and the recovery values were in the range of 89–95%. The simplicity, high enrichment, high recovery and good repeatability are the main advantages of the method presented. The DLLME-HPLC-DAD method was successfully applied to the analysis of EDTA in aqueous samples.  相似文献   
50.
Electrocatalytic oxidation of acetaldehyde was investigated on a copper electrode in alkaline solution. The process of oxidation involved and its kinetics were established by using cyclic voltammetry and chronoamperometry techniques as well as steady state polarization measurements. It has been found that in the course of an anodic potential sweep the electro‐oxidation of acetaldehyde follows the formation of Cu(III) and is catalysed by this species through a mediated electron transfer mechanism. A mechanism based on the electrochemical generation of Cu(III) active sites and their subsequent consumption by the acetaldehyde in question was also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号