首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   9篇
  国内免费   3篇
化学   139篇
晶体学   3篇
力学   6篇
数学   31篇
物理学   58篇
  2023年   3篇
  2022年   7篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   9篇
  2014年   9篇
  2013年   17篇
  2012年   14篇
  2011年   9篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   18篇
  2006年   15篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有237条查询结果,搜索用时 171 毫秒
91.
For the first time, coordination geometry and structure of metal binding sites in biologically relevant systems are studied using chemical shift parameters obtained from solid-state NMR experiments and quantum chemical calculations. It is also the first extensive report looking at metal-imidazole interaction in the solid state. The principal values of the (113)Cd chemical shift anisotropy (CSA) tensor in crystalline cadmium histidinate and two different cadmium formates (hydrate and anhydrate) were experimentally measured to understand the effect of coordination number and geometry on (113)Cd CSA. Further, (13)C and (15)N chemical shifts have also been experimentally determined to examine the influence of cadmium on the chemical shifts of (15)N and (13)C nuclei present near the metal site in the cadmium-histidine complex. These values were then compared with the chemical shift values obtained from the isostructural bis(histidinato)zinc(II) complex as well as from the unbound histidine. The results show that the isotropic chemical shift values of the carboxyl carbons shift downfield and those of amino and imidazolic nitrogens shift upfield in the metal (Zn,Cd)-histidine complexes relative to the values of the unbound histidine sample. These shifts are in correspondence with the anticipated values based on the crystal structure. Ab initio calculations on the cadmium histidinate molecule show good agreement with the (113)Cd CSA tensors determined from solid-state NMR experiments on powder samples. (15)N chemical shifts for other model complexes, namely, zinc glycinate and zinc hexaimidazole chloride, are also considered to comprehend the effect of zinc binding on (15)N chemical shifts.  相似文献   
92.
The bicoordinated dihydroxyphosphenium ion P(OH)2+ (1+) was generated specifically by charge-exchange dissociative ionization of triethylphosphite and its connectivity was confirmed by collision induced dissociation and neutralization-reionization mass spectra. The major dissociation of 1+ forming PO+ ions at m/z 47 involved another isomer, O=P-OH2+ (2+), for which the optimized geometry showed a long P-OH2 bond. Dissociative 70-eV electron ionization of diethyl phosphite produced mostly 1+ together with a less stable isomer, HP(O)OH+ (3+). Ion 2+ is possibly co-formed with 1+ upon dissociative 70-eV electron ionization of methylphosphonic acid. Neutralization-reionization of 1+ confirmed that P(OH)2* (1) was a stable species. Dissociations of neutral 1, as identified by variable-time measurements, involved rate-determining isomerization to 2 followed by fast loss of water. A competitive loss of H occurs from long-lived excited states of 1 produced by vertical electron transfer. The A and B states undergo rate-determining internal conversion to vibrationally highly excited ground state that loses an H atom via two competing mechanisms. The first of these is the direct cleavage of one of the O-H bonds in 1. The other is an isomerization to 3 followed by cleavage of the P-H bond to form O=P-OH as a stable product. The relative, dissociation, and transition state energies for the ions and neutrals were studied by ab initio and density functional theory calculations up to the QCISD(T)/6-311+G(3df,2p) and CCSD(T)/aug-cc-pVTZ levels of theory. RRKM calculations were performed to investigate unimolecular dissociation kinetics of 1. Excited state geometries and energies were investigated by a combination of configuration interaction singles and time-dependent density functional theory calculations.  相似文献   
93.
94.
95.
Yb14MnSb11 is an unusual ferromagnet with a Curie temperature of 52 +/- 1 K. Recent optical, Hall, magnetic, and thermodynamic measurements indicate that Yb14MnSb11 may be a rare example of an underscreened Kondo lattice. We report the first experimental observation of a new magnetic anomaly in this system at around 47 K, a few degrees below T(c). Systematic investigations of the ac and dc susceptibilities of Yb14MnSb11 single crystals reveal features associated with possible spin reorientation at this temperature. This new anomaly is extremely sensitive to the applied measurement field and is absent in temperature-dependent dc magnetization data for fields above 50 Oe. The origin of this could be due to decoupling of two distinct magnetic sublattices associated with MnSb4 tetrahedra.  相似文献   
96.
A new class of conductive and dimensionally stable surface-modified TiH2 particles prepared by ultra-sonication method is proposed as a non-carbon support for Pt catalysts. Thermal analysis results indicated good thermal stability of these materials at high temperatures in oxygen atmosphere. TiH2 particles are discovered to be stable at potentials higher than 1.5 V in O2-saturated H2SO4 solution. It is also found that the surface-modified TiH2 exhibits a modest electrocatalytic activity toward oxygen reduction reaction. Accelerated durability measurements show that Pt catalysts supported on sonicated TiH2 exhibited superior stability than standard Vulcan XC-72 carbon. High corrosion resistance and thermal stability render better chemical stability and structural integrity to surface-modified TiH2 particles at elevated temperatures.  相似文献   
97.
Treatment of the activated trirhenium cluster H3Re3(CO)10(MeCN)2 with the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) in CH2Cl2 does not afford the expected cluster product H3Re3(CO)10(bpcd) but rather the mononuclear complex fac-ClRe(CO)3(bpcd). The identity of fac-ClRe(CO)3(bpcd) was determined in solution by IR and NMR (1H and 31P) spectroscopies and the solid-state structure was established by X-ray diffraction analysis. fac-ClRe(CO)3(bpcd) crystallizes in the triclinic space P-1, a = 9.958(2) Å, b = 11.991(3) Å, c = 13.676(3) Å, α = 73.230(4)°, β = 73.806(4)°, γ = 77.409(4)°, V = 1484.6(6) Å3, Z = 2, and d calc = 1.723 Mg/m3; R = 0.0367, R w  = 0.0857 for 4253 reflections with I > 2σ(l).  相似文献   
98.
Thermolysis of the tricobalt cluster PhCCo3(CO)3(μ-CO)Cp2 (1) with the diphosphine ligands (Z)-Ph2PCH=CHPPh2 and 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) has been examined and found to give the diphosphine-substituted clusters PhCCo3(CO)[(Z)-Ph2PCH=CHPPh2](μ-CO)Cp2 (2) and PhCCo3(CO)(bpcd)(μ-CO)Cp2 (3) in moderate yield. The new compounds 2 and 3 have been isolated and characterized in solution by IR and NMR (1H and 31P) spectroscopies. VT 31P NMR data reveal that the chelating diphosphine ligand is fluxional in solution and exhibits a rocking motion between the axial and equatorial sites that renders both phosphorus moieties identical at ambient temperature. The molecular structure of PhCCo3(CO)[(Z)-Ph2PCH=CHPPh2](μ-CO)Cp2 (2) has been determined by X-ray crystallography. PhCCo3(CO)[(Z)-Ph2PCH=CHPPh2](μ-CO)Cp2 crystallizes, as the CH2Cl2 solvate, in the monoclinic space P21/n, a = 16.822(2) Å, b = 10.554(1) Å, c = 23.135(3) Å, β = 100.944(2)°, V = 4032.4(8) Å3, Z = 4, and d calc = 1.537 Mg/m3; R = 0.0488, R w = 0.0725 for 9431 reflections with I > 2σ(I). The solid-state structure of cluster 2 establishes the chelating nature of the ancillary (Z)-Ph2PCH=CHPPh2 ligand at the unique Co(CO)P2 center via coordination at an equatorial and an axial site. The redox behavior of clusters 2 and 3 has been explored by cyclic voltammetry and chronocoulometry. Each cluster reveals the presence of two one-electron oxidations of common origin due to the oxidation of a Co–Co bonding orbital. Whereas cluster 2 does not exhibit an accessible reduction process in CH2Cl2, a ligand-based one-electron reduction was found for cluster 3 given its low-lying π* LUMO associated with the bpcd ligand. The electrochemical data for clusters 2 and 3 are discussed with respect to the reported redox chemistry for this genre of tricobalt cluster and the bpcd ligand.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号