首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4051篇
  免费   145篇
  国内免费   18篇
化学   2813篇
晶体学   40篇
力学   95篇
数学   332篇
物理学   934篇
  2024年   5篇
  2023年   21篇
  2022年   71篇
  2021年   95篇
  2020年   79篇
  2019年   69篇
  2018年   59篇
  2017年   45篇
  2016年   121篇
  2015年   114篇
  2014年   141篇
  2013年   229篇
  2012年   317篇
  2011年   348篇
  2010年   181篇
  2009年   171篇
  2008年   266篇
  2007年   245篇
  2006年   225篇
  2005年   217篇
  2004年   168篇
  2003年   151篇
  2002年   137篇
  2001年   88篇
  2000年   90篇
  1999年   74篇
  1998年   59篇
  1997年   33篇
  1996年   49篇
  1995年   45篇
  1994年   48篇
  1993年   44篇
  1992年   30篇
  1991年   21篇
  1990年   29篇
  1989年   21篇
  1988年   6篇
  1987年   9篇
  1986年   12篇
  1985年   12篇
  1984年   6篇
  1983年   6篇
  1982年   8篇
  1980年   7篇
  1979年   5篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
排序方式: 共有4214条查询结果,搜索用时 15 毫秒
91.
Down syndrome critical region 1 (DSCR1), an oxidative stress-response gene, interacts with calcineurin and represses its phosphatase activity. Recently it was shown that hydrogen peroxide inactivates calcineurin by proteolytic cleavage. Based on these facts, we investigated whether oxidative stress affects DSCR1-mediated inactivation of calcineurin. We determined that overexpression of DSCR1 leads to increased proteolytic cleavage of calcineurin. Convertsely, knockdown of DSCR1 abolished calcineurin cleavage upon treatment with hydrogen peroxide. The PXIIXT motif in the COOH-terminus of DSCR1 is responsible for both binding and cleavage of calcineurin. The knockdown of overexpressed DSCR1 in DS fibroblast cells also abrogated calcineurin proteolysis by hydrogen peroxide. These results suggest that DSCR1 has the ability to inactivate calcineurin by inducing proteolytic cleavage of calcineurin upon oxidative stress.  相似文献   
92.
Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA−N3-coordinated SAzymes (MnSA−N3−C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA−N4−C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA−N3−C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.  相似文献   
93.
In Paper I, we studied vibrational properties of normal bases, base derivatives, Watson-Crick base pairs, and multiple layer base pair stacks in the frequency range of 1400-1800 cm(-1). However, typical IR absorption spectra of single- and double-stranded DNA have been measured in D(2)O solution. Consequently, the more relevant bases and base pairs are those with deuterium atoms in replacement with labile amino hydrogen atoms. Thus, we have carried out density functional theory vibrational analyses of properly deuterated bases, base pairs, and stacked base pair systems. In the frequency range of interest, both aromatic ring deformation modes and carbonyl stretching modes appear to be strongly IR active. Basis mode frequencies and vibrational coupling constants are newly determined and used to numerically simulate IR absorption spectra. It turns out that the hydration effects on vibrational spectra are important. The numerically simulated vibrational spectra are directly compared with experiments. Also, the (18)O-isotope exchange effect on the poly(dG):poly(dC) spectrum is quantitatively described. The present calculation results will be used to further simulate two-dimensional IR photon echo spectra of DNA oligomers in the companion Paper III.  相似文献   
94.
Activation of elemental sulfur by the monovalent nickel complex [PhTt (tBu)]Ni(CO) [PhTt(tBu)=phenyl{tris[(tert-butylmethyl)thio]methyl}borate] generates the disulfidodinickel(II) complex 2. This species is alternatively accessible via thermal decomposition of [PhTt (tBu)]Ni(SCPh3). Spectroscopic, magnetic, and X-ray diffraction studies establish that 2 contains a mu-eta(2):eta(2)-S2 ligand that fosters antiferromagnetic exchange coupling between the Ni (II) ions. This observation is in contrast to the lighter congener, oxygen, which strongly favors the bis(mu-oxo)dinickel(III) structure. 2 oxidizes PPh 3 to SPPh3 and reacts with O2, generating several products, one of which has been identified as [(PhTt (tBu))Ni]2(mu-S) (3).  相似文献   
95.
Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3-VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3-MH and CH2=MH2) along with the methylidyne trihydride anion complexes (CHMH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds.  相似文献   
96.
The interaction of the nitric oxide ions NO+ and NO- with benzene (C6H6) and the aromatic R-groups of the amino acids phenylalanine (Phe), tyrosine (Tyr), histidine (His), and tryptophan (Trp) have been examined using the DFT method B3LYP and the conventional electron correlation method MP2. In particular, the structures and complexation energies of the resulting half-sandwich Ar...NO+/- and sandwich [Ar...NO...Ar]+/- complexes have been considered. For the Ar...NO+ complexes, the presence of an electron rich heteroatom within or attached to the ring is found to not preclude the cation...pi bound complex from being the most stable. Furthermore, unlike the anionic complexes, the pi...cation...pi ([Ar...NO...Ar]+) complexes do not correspond to a "doubling" of the parent half-sandwich.  相似文献   
97.
A novel, two-photon probe for the detection of free Mg2+ ions in living cells and live tissues has been developed. The probe can be excited by 880 nm laser photons, emits strong two-photon excited fluorescence in response to Mg2+ ions, can be easily loaded into the cell and tissue, shows high photostability, and can measure the Mg2+ ion concentration without interference by Ca2+ ions in living cells. The intracellular dissociation constant (Kdi) for Mg2+ determined by the two-photon process is 2.5 mM, which is suitable for dynamic Mg2+ concentration measurement. In addition, the probe is capable of imaging endogenous stores of free Mg2+ at a few hundred micrometers depth in live tissues using two-photon microscopy (TPM).  相似文献   
98.
99.
Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 °C for 30 min using MnO2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is maintained at 99.1 mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.  相似文献   
100.
The experimentally measured bimolecular reaction rate constant, k(2) , should in principle correlate with the theoretically calculated rate-limiting free energy barrier, ΔG(≠) , through the Eyring equation, but it fails quite often to do so due to the inability of current computational methods to account in a precise manner for all the factors contributing to ΔG(≠) . This is further aggravated by the exponential sensitivity of the Eyring equation to these factors. We have taken herein a pragmatic approach for C?H activation reactions of 1,4-cyclohexadiene with a variety of octahedral nonheme Fe(IV) O complexes. The approach consists of empirically determining two constants that would aid in predicting experimental k(2) values uniformly from theoretically calculated electronic energy (ΔE(≠) ) values. Shown in this study is the predictive power as well as insights into energy relationships in Fe(IV) O C?H activation reactions. We also find that the difference between ΔG(≠) and ΔE(≠) converges at slow reactions, in a manner suggestive of changes in the importance of the triplet spin state weight in the overall reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号