首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
  国内免费   3篇
化学   187篇
数学   13篇
物理学   16篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   4篇
  2020年   10篇
  2019年   8篇
  2018年   16篇
  2017年   11篇
  2016年   17篇
  2015年   5篇
  2014年   13篇
  2013年   16篇
  2012年   16篇
  2011年   22篇
  2010年   8篇
  2009年   12篇
  2008年   5篇
  2007年   11篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有216条查询结果,搜索用时 31 毫秒
31.
A highly selective electrochemical sensor was fabricated based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4 NPs). The nanocomposite has attractive properties such as high surface-to-volume ratio and good electrocatalytic activity towards the drugs acetaminophen (AC), epinephrine (EP), and melatonin (MT), best at working voltages of 0.35, 0.09 and 0.55 V (vs. Ag/AgCl), respectively. The linear ranges (and detection limits) are 6.5–135 (0.4) μmol L?1 for AC, 5–100 (0.7) μmol L?1 for EP, and 6.5–145 (3) μmol L?1 for MT.
Graphical abstract A novel electrochemical sensor based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4) for the simultaneous detection of the acetaminophen, epinephrine and melatonin was fabricated
  相似文献   
32.
In this study, cyclic voltammetry and differential pulse voltammetry were used to determine the electrochemical properties and concentration of naproxen in pharmaceutical formulation and human serum samples by using a carbon paste electrode modified with activated carbon nanoparticles. Optimum conditions were obtained at an electrode with 0.005 g activated carbon nanoparticles in a phosphate buffer solution of pH 6 as a supporting electrolyte. Linear calibration curves were obtained in the range of 0.1–120 μM, and the detection limit of naproxen determined was 0.0234 μM. The modified electrode shows good selectivity for naproxen in the presence of some organic and inorganic interferences and very good precision in real samples. Finally, naproxen was measured in the presence of acetaminophen.  相似文献   
33.
Electrochemical oxidation of catechol and some 3-substituted catechols (1a--c) has been studied in the presence of 2-chloro-5,5-dimethyl-1,3-cyclohexanedione (3) in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results indicate that the quinones derived from catechols (1a--c) participate in a Michael addition reaction with 2-chloro-5,5-dimethyl-1,3-cyclohexanedione (3) with consumption of only two electrons per molecule of (1a--c) to from the corresponding benzoforans (10a--c). The electrochemical synthesis of benzofurans has been successfully performed at a carbon rod electrode and in an undivided cell with high yields and purity.  相似文献   
34.
In continuation of our investigation of characteristics and thermodynamic properties of the i‐motif 5′‐d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine‐rich oligonucleotide, this article evaluates the stabilities of i‐motif oligonucleotides upon insertion of naphthalimide (1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) as the intercalating nucleic acid. The stabilities of i‐motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding and non‐crowding). This study indicated a positive effect of the naphthalimide intercalating nucleotides on the stabilities of the i‐motif structures compared to the wild‐type structure which is in contrast to a previous observation for a pyrene‐intercalating nucleotide showing a decrease in Tm values.  相似文献   
35.
Polyaniline–Nd2O3:Al2O3 nanocomposites were prepared by in situ oxidative polymerization method using different weight percentages of oxide powders. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy and X‐ray diffraction for molecular and crystal structures. Scanning electron microscopy and transmission electron microscopy images show the tubular structure of polyaniline nanocomposite with embedded metal oxides. The electrical conductivity of the nanocomposites increases with increase in temperature as well as with concentration of Nd2O3:Al2O3 particles in polyaniline. This is because of the hopping of charge polarons and extended chain length of the nanocomposites as evidenced by the negative thermal coefficient (NTC) characteristic. A high NTC value of 2.67 was found in nanocomposites with 15 wt% of oxide particles. These nanocomposites show low dielectric constant and dielectric loss; the electrical conductivity is higher than 0.3 S/cm as confirmed by Cole–Cole plot that indicates a decrease in both grain resistance and bulk resistance of the nanocomposites. The current–voltage and capacitance–voltage measurements were also carried out. The carrier mobility μ values of pure polyaniline and nanocomposites were found to be 4.27 × 10?3 and 1.45 × 10–2 H.M?1, respectively. A significant enhancement in carrier mobility was observed in comparison with the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
37.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2.  相似文献   
38.
A simple and efficient one‐pot synthesis of alkyl 2‐(alkyl)‐4‐methyl‐2‐thioxo‐2,3‐dihydrothiazole‐5‐carboxylates from the reaction of primary alkylamines and carbon disulfide in the presence of 2‐chloro‐1,3‐dicarbonyl compounds is described. This new protocol has several advantages such as lack of necessity of the catalyst, good yields, mild conditions and short times for reaction.  相似文献   
39.
40.
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey’s multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号