首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254329篇
  免费   1993篇
  国内免费   711篇
化学   128844篇
晶体学   4251篇
力学   13232篇
综合类   17篇
数学   26245篇
物理学   84444篇
  2021年   2387篇
  2020年   2401篇
  2019年   2923篇
  2018年   4131篇
  2017年   4086篇
  2016年   5564篇
  2015年   2889篇
  2014年   5160篇
  2013年   10781篇
  2012年   8882篇
  2011年   10679篇
  2010年   8327篇
  2009年   8581篇
  2008年   10018篇
  2007年   9813篇
  2006年   8803篇
  2005年   7737篇
  2004年   7303篇
  2003年   6680篇
  2002年   6577篇
  2001年   8194篇
  2000年   6023篇
  1999年   4496篇
  1998年   3635篇
  1997年   3699篇
  1996年   3304篇
  1995年   2894篇
  1994年   2955篇
  1993年   2787篇
  1992年   3351篇
  1991年   3468篇
  1990年   3283篇
  1989年   3284篇
  1988年   3174篇
  1987年   3235篇
  1986年   2972篇
  1985年   3793篇
  1984年   3818篇
  1983年   3091篇
  1982年   3053篇
  1981年   3009篇
  1980年   2780篇
  1979年   3256篇
  1978年   3259篇
  1977年   3464篇
  1976年   3392篇
  1975年   3093篇
  1974年   3063篇
  1973年   3124篇
  1972年   2303篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
The PARRNe facility has been used to produce neutron-rich isotopes 83,84Gaby the ISOL method. Their decay has been studied, and β-γ coincidence and γ-γ coincidence data were collected as a function of time. The first two excited levels in 83Ge and the first excited level in 84Ge have been measured for the first time.  相似文献   
104.
There is a growing interest in developing numerical tools to investigate the onset of physical instabilities observed in experiments involving viscoelastic flows, which is a difficult and challenging task as the simulations are very sensitive to numerical instabilities. Following a recent linear stability analysis carried out in order to better understand qualitatively the origin of numerical instabilities occurring in the simulation of flows viscoelastic fluids, the present paper considers a possible extension for more complex flows. This promising method could be applied to track instabilities in complex (i.e. essentially non‐parallel) flows. In addition, results related to transient growth mechanism indicate that it might be responsible for the development of numerical instabilities in the simulation of viscoelastic fluids. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
105.
The deformed quantum Calogero-Moser-Sutherland problems related to the root systems of the contragredient Lie superalgebras are introduced. The construction is based on the notion of the generalized root systems suggested by V. Serganova. For the classical series a recurrent formula for the quantum integrals is found, which implies the integrability of these problems. The corresponding algebras of the quantum integrals are investigated, the explicit formulas for their Poincare series for generic values of the deformation parameter are presented.  相似文献   
106.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
107.
108.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
109.
110.
We have made direct pump–probe measurements of spin lifetimes in long wavelength narrow-gap semiconductors at wavelengths between 4 and 10 μm and from 4 to 300 K. In particular, we measure remarkably long spin lifetimes, τs300 ps, even at 300 K for epilayers of degenerate n-type InSb. In this material the mobility is approximately constant between 77 and 300 K, and we find that τs is approximately constant in this temperature range. In order to determine the dominant spin relaxation mechanism we have investigated the temperature dependence of τs in non-degenerate lightly n-type Hg0.78Cd0.22Te of approximately the same band gap as InSb, and find that τs varies from 356 ps at 150 K to 24 ps at 300 K. Our results, both in magnitude and temperature dependence of τs, imply that the Elliott–Yafet model dominates in these materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号