首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1577篇
  免费   56篇
  国内免费   15篇
化学   996篇
晶体学   28篇
力学   61篇
数学   233篇
物理学   330篇
  2023年   10篇
  2022年   49篇
  2021年   45篇
  2020年   44篇
  2019年   54篇
  2018年   55篇
  2017年   56篇
  2016年   71篇
  2015年   56篇
  2014年   68篇
  2013年   159篇
  2012年   98篇
  2011年   135篇
  2010年   78篇
  2009年   88篇
  2008年   98篇
  2007年   97篇
  2006年   66篇
  2005年   58篇
  2004年   46篇
  2003年   42篇
  2002年   33篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   8篇
  1997年   6篇
  1996年   11篇
  1995年   3篇
  1994年   3篇
  1993年   9篇
  1992年   10篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   10篇
  1983年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   2篇
  1975年   4篇
  1974年   3篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1936年   1篇
排序方式: 共有1648条查询结果,搜索用时 15 毫秒
41.
Structural Chemistry - Binding affinity and intermolecular interactions are essential characteristics that could be used to comprehend molecular recognition between molecules in supramolecular...  相似文献   
42.
In this study, facile preparation of pure and nano-sized cobalt oxides particles was achieved using low-cost mechanical ball-milling synthesis route. Microstructural and morphological properties of synthesised products were characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. XRD results indicated that the fabricated samples composed of cubic pure phase CoO and Co3O4 nanocrystalline particles with an average crystallite size of 37.2 and 31.8 nm, respectively. TEM images showed that the resulting samples consisted of agglomerates of particles with average diameter of about 37.6 nm for CoO and 31.9 nm for Co3O4. Phase purity of the prepared samples was further investigated due to their promising technological applications. Local atomic structure properties of the prepared nanoparticles were probed using synchrotron radiation-based X-ray absorption spectroscopy (XAS) including X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). EXAFS data analysis further confirmed the formation of single-phase CoO and Co3O4 nanoparticles. In addition, structural properties of cobalt oxide nanoparticles were investigated by performing density functional theory calculations at B3LYP/TZVP level and Born–Oppenheimer molecular dynamics. Theoretical calculations for both prepared samples were found to be consistent with the experimental results derived from EXAFS analysis. Obtained results herein reveals that highly crystalline and pure phase CoO and Co3O4 nanoparticles can be synthesised using simple, inexpensive and eco-friendly ball-milling method for renewable energy applications involving fuel cells and water splitting devices.  相似文献   
43.
In this study, metal‐assisted etching (MAE) with nitric acid (HNO3) as a hole injecting agent has been employed to texture multi‐crystalline silicon wafers. It was previously proven that addition of HNO3 enabled control of surface texturing so as to form nano‐cone shaped structures rather than nanowires. The process parameters optimized for optically efficient texturing have been applied to multi‐crystalline wafers. Fabrication of p‐type Al:BSF cells have been carried out on textured samples with thermal SiO2/PECVD‐SiNx stack passivation and screen printed metallization. Firing process has been optimized in order to obtain the best contact formation. Finally, jsc enhancement of 0.9 mA/cm2 and 0.6% absolute increase in the efficiency have been achieved. This proves that the optimized MAE texture process can be successfully used in multi‐crystalline wafer texturing with standard passivation methods.

JV curves and SEM images of the nano and iso‐textured samples. jsc enhancement of 0.9 mA/cm2 together with 0.6% absolute efficiency gain was observed on nano‐textured samples.  相似文献   

44.
Well-dispersed nanoparticles of nickel hydroxide were prepared via a simple electrochemical method. Electrodeposition experiments were performed from 0.005 M Ni(NO3)2 bath at a constant current density of 0.1 mA cm?2 on the steel cathode for 1 h. Recording the potential values during the deposition process revealed that the reduction of water has major role in the base electrogeneration at the applied conditions. The obtained deposit was characterized by the X-ray diffraction (XRD), infrared (IR), differential scanning calorimeter–thermogravimetric analysis, carbon–nitrogen–hydrogen (CHN), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The CHN, XRD, and IR analyses showed that the obtained deposit has α phase of Ni(OH)2 with intercalated nitrate ions in its structure. Morphological characterization by SEM and TEM revealed that the prepared α-Ni(OH)2 is composed of well-dispersed ultrafine particles with the size of about 5 nm. The supercapacitive performance of the prepared nanoparticles was analyzed by means of cyclic voltammetry and galvanostatic charge–discharge tests. The electrochemical measurements showed an excellent supercapacitive behavior of the prepared α-Ni(OH)2 nanoparticles. It was also observed that the α-Ni(OH)2 ultrafine particles have better electrochemical characteristic and supercapacitive behavior than β-Ni(OH)2 ultrafine nanoparticles, including less positive charging potential, lower E a???E c value, better reversibility, higher E OER???E a, higher utilization of active material, higher proton diffusion coefficient, greater discharge capacity, and better cyclability. These results make the α-Ni(OH)2 nanoparticles as an excellent candidate for the supercapacitor materials.  相似文献   
45.
Research on Chemical Intermediates - The excess emission of greenhouse gases (GHGs) such as CO2 and CH4 is posing an acute threat to the environment, and efficient ways are being sought to utilize...  相似文献   
46.
Reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6 1 , with sodium aryloxides have been studied. Compound 1 was found to react by the nucleophilic substitution pathway to yield monocyclophosphazenes [N3P3Cl6(OC6H2Bu13-2,4,6) 5 and N3P3Cl4(OC6H2Me-4-Bu12-2,6)2 6 ] and bi(cyclophosphazenes) ([Cl5N3P3-P3N3Cl4(OC6H3Bu12-2,6)] 7 and [N3P3(OC6H3Bu12-2,6)5]2 8 ). The unusual bi(cyclophosphazenes) 7 and 8 are the first examples of two cyclotriphosphazene rings linked by a P(SINGLE BOND)P bond [2.193 (2) Å], which have been obtained by reacting 1 with ArONa. The structures of compounds 5–8 are ascertained by elemental analyses, 1H-, 31P-13C-NMR, IR, and MS spectra. The molecular structure of monocyclic-phosphazene 5 was determined by X-ray diffraction techniques for further structural assignment. It crystallizes in the monoclinic space group P21/m with a = 6.144(2), b = 17.079(9), c = 13.181(9) Å, β = 92.79(7), and Z = 2, R = 0.074. Compound 5 is on a crystallographic mirror plane, and there is only a half molecule in the asymmetric unit. © 1996 John Wiley & Sons, Inc.  相似文献   
47.
48.
ELECTRORHEOLOGICAL PROPERTIES OF POLYANILINE/PUMICE COMPOSITE SUSPENSIONS   总被引:1,自引:0,他引:1  
Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.  相似文献   
49.
Carbon nanotubes (CNT)/Nafion-modified glassy carbon (GC) electrodes were used to immobilize the enzyme acetylcholinesterase (AChE) by crosslinking with glutaraldehyde. The CNT-modified electrodes exhibited a sensitive and stable electrocatalytic behavior towards thiocholine (TCh). Compared to ordinary GC electrodes modified with Nafion, a substantial (500-mV) decrease in the overvoltage of the TCh oxidation reaction is observed, along with a tenfold enhancement in the amperometric response. The CNT/Nafion/AChE electrode has very good stability of at least a month compared to surfaces made without crosslinking in the absence and presence of Nafion. Under optimal loadings of CNT, Nafion, AChE, and glutaraldehyde, a solution of CNT/Nafion in N,N-dimethylformamide (DMF) containing 4 mg/mL CNT and 0.01% Nafion was used to construct the electrodes in order to maximize the sensitivity of the biosensor for inhibition studies. An optimal enzyme loading of 0.137 U and crosslinking in 0.01% glutaraldehyde for 1 h was also needed to achieve this goal. The prepared electrodes had very good reproducibility to 1.0 mM acetylthiocholine (ATCh) (relative standard deviation [RSD] <5% for eight electrodes). Using paraoxon as a model pesticide, the biosensor was able to detect as low as 1.0 nM after 30 min of incubation at 30 °C. Using a log scale, the biosensor had good linearity in the concentration range 50?C800 nM, with a correlation coefficient of 0.99. The prepared biosensor was used to test real water samples spiked with paraoxon and showed good correlation with a calibration curve using phosphate buffer.  相似文献   
50.
X-ray specular-reflectivity measurements have been carried out on nanocrystalline/amorphous Fe/Ni75B25 multilayer films which were sputter-deposited on Si substrates, to investigate the evolution of interface roughness and the correlation between structure and transport properties. A significant interface roughness correlation with increasing Fe/NiB layer repetition was observed. The investigated films indicated a temperature dependent high electrical resistivity—104 μΩ-cm at 10 K and 103 μΩ-cm at 300 K—with a semiconductor-metal transition like behavior. Selected area electron diffraction revealed the presence of crystalline bcc Fe phase and NiB in amorphous state. The structural and transport properties of the multilayers are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号